2 resultados para Adverse conditions
em Digital Commons - Michigan Tech
Resumo:
The U.S. natural gas industry has changed because of the recent ability to produce natural gas from unconventional shale deposits. One of the largest and most important deposits is the Marcellus Shale. Hydraulic fracturing and horizontal drilling have allowed for the technical feasibility of production, but concerns exist regarding the economics of shale gas production. These concerns are related to limited production and economic data for shale gas wells, declines in the rates of production, falling natural gas prices, oversupply issues coupled with slow growth in U.S. natural gas demand, and rising production costs. An attempt to determine profitability was done through the economic analysis of an average shale gas well using data that is representative of natural gas production from 2009 to 2011 in the Marcellus Shale. Despite the adverse conditions facing the shale gas industry it is concluded from the results of this analysis that a shale gas well in the Marcellus Shale is profitable based on NPV, IRR and breakeven price calculations.
Resumo:
Gibberellin (GA) is a growth promoting hormone implicated in regulating a diversity of plant processes. This dissertation examines the role of GA metabolic and signaling genes in woody plant growth and development. Transgenic modifications, expression analysis, physiological/biochemical assays, biometric measurements and histological analysis were used to understand the regulatory roles these genes play in the model woody plant, Populus. Our results highlight the importance of GA regulatory genes in woody perennial growth, including: phenology, wood formation, phenotypic plasticity, and growth/survival under field conditions. We characterize two putative Populus orthologs of the SHORT INTERNODES (SHI) gene from Arabidopsis, a negative regulator of GA signaling. RNAi-mediated suppression of Populus SHI-like genes increased several growth-related traits, including extent of xylem proliferation, in a dose-dependent manner. Three Populus genes, sharing sequence homology to the positive regulator of GA signaling gene PHOTOPERIOD-RESPONSIVE 1 (PHOR1) from Solanum, are up-regulated in GA-deficient and insensitive plants suggesting a conserved role in GA signaling. We demonstrate that Populus PHOR1-like genes have overlapping and divergent function(s). Two PHOR1-like genes are highly expressed in roots, predominantly affect root growth (e.g., morphology, starch quantity and gravitropism), and induced by short-days (SD). The other PHOR1-like gene is ubiquitously expressed with a generalized function in root and shoot development. The effects of GA catabolic and signaling genes on important traits (e.g., adaptive and productivity traits) were studied in a multi-year field trial. Transgenics overexpressing GA 2-oxidase (GA2ox) and DELLA genes showed tremendous variation in growth, form, foliage, and phenology (i.e., vegetative and reproductive). Observed gradients in trait modifications were correlated to transgene expression levels, in a manner suggesting a dose-dependent relationship. We explore GA2ox and DELLA genes involvement in mediating growth responses to immediate short-term drought stress, and SD photoperiods, signaling prolonged periods of stress (e.g., winter bud dormancy). GA2ox and DELLA genes show substantial up-regulation in response to drought and SDs. Transgenics overexpressing homologs of these genes subjected to drought and SD photoperiods show hypersensitive growth restraint and increased stress resistances. These results suggest growth cessation (i.e., dormancy) in response to adverse conditions is mediated by GA regulatory genes.