4 resultados para Adaptive process

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intraneural Ganglion Cysts expand within in a nerve, causing neurological deficits in afflicted patients. Modeling the propagation of these cysts, originating in the articular branch and then expanding radially outward, will help prove articular theory, and ultimately allow for more purposeful treatment of this condition. In Finite Element Analysis, traditional Lagrangian meshing methods fail to model the excessive deformation that occurs in the propagation of these cysts. This report explores the method of manual adaptive remeshing as a method to allow for the use of Lagrangian meshing, while circumventing the severe mesh distortions typical of using a Lagrangian mesh with a large deformation. Manual adaptive remeshing is the process of remeshing a deformed meshed part and then reapplying loads in order to achieve a larger deformation than a single mesh can achieve without excessive distortion. The methods of manual adaptive remeshing described in this Master’s Report are sufficient in modeling large deformations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numerical solution of the incompressible Navier-Stokes Equations offers an effective alternative to the experimental analysis of Fluid-Structure interaction i.e. dynamical coupling between a fluid and a solid which otherwise is very complex, time consuming and very expensive. To have a method which can accurately model these types of mechanical systems by numerical solutions becomes a great option, since these advantages are even more obvious when considering huge structures like bridges, high rise buildings, or even wind turbine blades with diameters as large as 200 meters. The modeling of such processes, however, involves complex multiphysics problems along with complex geometries. This thesis focuses on a novel vorticity-velocity formulation called the KLE to solve the incompressible Navier-stokes equations for such FSI problems. This scheme allows for the implementation of robust adaptive ODE time integration schemes and thus allows us to tackle the various multiphysics problems as separate modules. The current algorithm for KLE employs a structured or unstructured mesh for spatial discretization and it allows the use of a self-adaptive or fixed time step ODE solver while dealing with unsteady problems. This research deals with the analysis of the effects of the Courant-Friedrichs-Lewy (CFL) condition for KLE when applied to unsteady Stoke’s problem. The objective is to conduct a numerical analysis for stability and, hence, for convergence. Our results confirmthat the time step ∆t is constrained by the CFL-like condition ∆t ≤ const. hα, where h denotes the variable that represents spatial discretization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a statistical inference scenario, the estimation of target signal or its parameters is done by processing data from informative measurements. The estimation performance can be enhanced if we choose the measurements based on some criteria that help to direct our sensing resources such that the measurements are more informative about the parameter we intend to estimate. While taking multiple measurements, the measurements can be chosen online so that more information could be extracted from the data in each measurement process. This approach fits well in Bayesian inference model often used to produce successive posterior distributions of the associated parameter. We explore the sensor array processing scenario for adaptive sensing of a target parameter. The measurement choice is described by a measurement matrix that multiplies the data vector normally associated with the array signal processing. The adaptive sensing of both static and dynamic system models is done by the online selection of proper measurement matrix over time. For the dynamic system model, the target is assumed to move with some distribution and the prior distribution at each time step is changed. The information gained through adaptive sensing of the moving target is lost due to the relative shift of the target. The adaptive sensing paradigm has many similarities with compressive sensing. We have attempted to reconcile the two approaches by modifying the observation model of adaptive sensing to match the compressive sensing model for the estimation of a sparse vector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Madagascar’s terrestrial and aquatic ecosystems have long supported a unique set of ecological communities, many of whom are endemic to the tropical island. Those same ecosystems have been a source of valuable natural resources to some of the poorest people in the world. Nevertheless, with pride, ingenuity and resourcefulness, the Malagasy people of the southwest coast, being of Vezo identity, subsist with low development fishing techniques aimed at an increasingly threatened host of aquatic seascapes. Mangroves, sea grass bed, and coral reefs of the region are under increased pressure from the general populace for both food provisions and support of economic opportunity. Besides purveyors and extractors, the coastal waters are also subject to a number of natural stressors, including cyclones and invasive, predator species of both flora and fauna. In addition, the aquatic ecosystems of the region are undergoing increased nutrient and sediment runoff due, in part, to Madagascar’s heavy reliance on land for agricultural purposes (Scales, 2011). Moreover, its coastal waters, like so many throughout the world, have been proven to be warming at an alarming rate over the past few decades. In recognizing the intimate interconnectedness of the both the social and ecological systems, conservation organizations have invoked a host of complimentary conservation and social development efforts with the dual aim of preserving or restoring the health of both the coastal ecosystems and the people of the region. This paper provides a way of thinking more holistically about the social-ecological system within a resiliency frame of understanding. Secondly, it applies a platform known as state-and-transition modeling to give form to the process. State-and-transition modeling is an iterative investigation into the physical makeup of a system of study as well as the boundaries and influences on that state, and has been used in restorative ecology for more than a decade. Lastly, that model is sited within an adaptive management scheme that provides a structured, cyclical, objective-oriented process for testing stakeholders cognitive understanding of the ecosystem through a pragmatic implementation and monitoring a host of small-scale interventions developed as part of the adaptive management process. Throughout, evidence of the application of the theories and frameworks are offered, with every effort made to retool conservation-minded development practitioners with a comprehensive strategy for addressing the increasingly fragile social-ecological systems of southwest Madagascar. It is offered, in conclusion, that the seascapes of the region would be an excellent case study worthy of future application of state-and-transition modeling and adaptive management as frameworks for conservation-minded development practitioners whose multiple projects, each with its own objective, have been implemented with a single goal in mind: preserve and protect the state of the supporting environment while providing for the basic needs of the local Malagasy people.