1 resultado para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer
em Digital Commons - Michigan Tech
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (6)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Aston University Research Archive (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Boston University Digital Common (78)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (72)
- CentAUR: Central Archive University of Reading - UK (100)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (28)
- Cochin University of Science & Technology (CUSAT), India (8)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (7)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (5)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (53)
- Instituto Politécnico do Porto, Portugal (9)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (75)
- Queensland University of Technology - ePrints Archive (60)
- Repositorio Académico de la Universidad Nacional de Costa Rica (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (110)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (19)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (29)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Montréal, Canada (4)
- University of Michigan (1)
- University of Queensland eSpace - Australia (3)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
This thesis is focused on the control of a system with recycle. A new control strategy using neural network combined with PID controller was proposed. The combined controller was studied and tested on the pressure control of a vaporizer inside a para-xylene production process. The major problems are the negative effects of recycle and the delays on instability and performance. The neural network was designed to move the process close to the set points while the PID accomplishes the finer level of disturbance rejection and offset reductions. Our simulation results show that during control, the neural network was able to determine the nonlinear relationship between steady state and manipulated variables. The results also show the disturbance rejection was handled by PID controller effectively.