3 resultados para Acute Posttraumatic Stress Reaction
em Digital Commons - Michigan Tech
Resumo:
Posttraumatic stress and PTSD are becoming familiar terms to refer to what we often call the invisible wounds of war, yet these are recent additions to a popular discourse in which images of and ideas about combat-affected veterans have long circulated. A legacy of ideas about combat veterans and war trauma thus intersects with more recent clinical information about PTSD to become part of a discourse of visual media that has defined and continues to redefine veteran for popular audiences. In this dissertation I examine realist combat veteran representations in selected films and other visual media from three periods: during and after World Wars I and II (James Allen from I Am a Fugitive from a Chain Gang, Fred Derry and Al Stephenson from The Best Years of Our Lives); after the Vietnam War (Michael from The Deer Hunter, Eriksson from Casualties of War), and post 9/11 (Will James from The Hurt Locker, a collection of veterans from Wartorn: 1861-2010.) Employing a theoretical framework informed by visual media studies, Barthes’ concept of myth, and Foucault’s concept ofdiscursive unity, I analyze how these veteran representations are endowed with PTSD symptom-like behaviors and responses that seem reasonable and natural within the narrative arc. I contend that veteran myths appear through each veteran representation as the narrative develops and resolves. I argue that these veteran myths are many and varied but that they crystallize in a dominant veteran discourse, a discursive unity that I term veteranness. I further argue that veteranness entangles discrete categories such as veteran, combat veteran, and PTSD with veteran myths, often tying dominant discourse about combat-related PTSD to outdated or outmoded notions that significantly affect our attitudes about and treatment of veterans. A basic premise of my research is that unless and until we learn about the lasting effects of the trauma inherent to combat, we hinder our ability to fulfill our responsibilities to war veterans. A society that limits its understanding of posttraumatic stress, PTSD and post-war experiences of actual veterans affected by war trauma to veteranness or veteran myths risks normalizing or naturalizing an unexamined set of sociocultural expectations of all veterans, rendering them voice-less, invisible, and, ultimately disposable.
Resumo:
Acute alcohol consumption has been reported to decrease mean arterial pressure (MAP) during orthostatic challenge, a response that may contribute to alcohol-mediated hypotension and eventually syncope. Muscle sympathetic nerve activity (MSNA) increases during orthostatic stress to help maintain MAP, yet the influence of alcohol on MSNA during orthostatic stress has not been determined. We hypothesized that alcohol ingestion would blunt arterial blood pressure and MSNA responses to progressive lower body negative pressure (LBNP). MAP, MSNA, and heart rate (HR) were recorded during progressive LBNP (-5, -10, -15, -20, -30, and -40 mmHg; 3 min/stage) in 30 subjects(age 24 ± 1 yrs). After an initial progressive LBNP protocol (pre-treatment), subjects were randomly assigned to consume alcohol (0.8g ethanol/kg body mass; n=15) or placebo (n=15) and then repeated the progressive LBNP protocol (post-treatment). Alcohol increased (drug × treatment, P ≤ 0.05) resting HR (59 ± 2 to 65 ± 2 beats/min) and MSNA (13 ± 3 to 19 ± 4 bursts/min) when compared to placebo. While alcohol increased MAP (83 ± 2 to 87 ± 2 mmHg), these increases were also observed with placebo (82 ± 2 to 88 ± 1 mmHg; treatment, P < 0.05; drug × treatment, P > 0.05). During progressive LBNP, a prominent decrease in MAP was observed after alcohol (drug × time × treatment, P < 0.05), but not placebo. There was also a significant attenuated response in forearm vascular resistance (FVR) during progressive LBNP (drug × time × treatment, P < 0.05). MSNA and HR increased during all LBNP protocols, but there were no differences between treatments or groups (drugs). In summary, acute alcohol ingestion induces an attenuation in blood pressure response during an orthostatic challenge, possibly due to the effect that alcohol has on impairing peripheral blood vessel constriction.
Resumo:
Recent epidemiological studies report a consistent association between short sleep and incidence of hypertension, as well as short sleep and cardiovascular disease-related mortality. While the association between short sleep and hypertension appears to be stronger in women than men, the mechanisms underlying the relations between sleep deprivation, stress, risks of cardiovascular diseases, and sex remain unclear. We conducted two studies to investigate the underlying neural mechanisms of these relations. In study 1, we examined sympathetic neural and blood pressure responses to experimentally-induced sleep deprivation in men and women. We further investigated the influence of sleep deprivation on cardiovascular reactivity to acute stress. In study 2, we examined the neural and cardiovascular function throughout the ovarian cycle in sleep deprived women. Twenty-eight young healthy subjects (14men and 14 women) were tested twice in study 1, once after normal sleep (NS) and once after 24-h total sleep deprivation (TSD). We measured the blood pressure, heart rate (HR), muscle sympathetic nerve activity (MSNA) and forearm blood flow (FBF) during 10min baseline, 5min of mental stress (MS) and 2 min cold pressor test (CPT). We demonstrated that TSD increased resting arterial blood pressure to a similar extent in both men and women, but MSNA decreased only in men following TSD. This MSNA response was associated with altered baroreflex function in women and divergent testosterone responses to TSD between men and women. Regarding TSD and cardiovascular reactivity, TSD elicited augmented HR reactivity and delayed recovery during both MS and CPT in men and women, and responses between sexes were not statistically different. Fourteen young healthy women participated in study 2. Subjects were tested twice, once during their early follicular (EF) phase after TSD, once during their mid-luteal (ML) phase after TSD. Blood pressure, HR, MSNA, and FBF were recorded during 10min baseline, 5 min MS, and 2 min CPT. We observed an augmented resting supine blood pressure during EF compared to ML in sleep deprived women. In contrast, resting MSNA, as well as cardiovascular responses to stressors, were similar between EF and ML after TSD. In conclusion, we observed sex differences in MSNA responses to TSD that demonstrate reductions of MSNA in men, but not women. TSD elicited augmented HR reactivity and delayed HR recovery to acute stressors similarly in men and women. We also reported an augmented supine blood pressure during EF compared to ML in sleep deprived women. These novel findings provide new and valuable mechanistic insight regarding the complex and poorly understood relations among sleep deprivation, sex, stress, and risk of cardiovascular disease.