4 resultados para AQUATIC MACROPHYTES

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metal-rich copper mine tailings, called stamp sands, were dumped by mining companies directly into streams and along the Lake Superior shoreline, degrading Keweenaw Peninsula waterways. One of the largest disposal sites is near Gay, Michigan, where tailings have been moved along the shoreline by currents since mining ceased. As a result, the smallest sand particles have been washed into deeper water and are filling the interstitial spaces of Buffalo Reef, a critical lake trout spawning site. This research is the first to investigate if stamp sand is detrimental to survival and early development of eggs and larvae of lake sturgeon, lake trout, and Northern leopard frogs, and also examines if the presence of stamp sands influences substrate selection of earthworms. This study found that stamp sand had significantly larger mean particle sizes and irregular shapes compared to natural sand, and earthworms show a strong preference for natural substrate over any combination that included stamp sand. Additionally, copper analysis (Cu2+) of surface water over stamp sand and natural sand showed concentrations were significantly higher in stamp sand surface water (100 μg/L) compared to natural sand surface water (10 μg/L). Frog embryos had similar hatch success over both types of sand, but tadpoles reared over natural sand grew faster and had higher survival rates. Eggs of lake sturgeon showed similar hatch success and development over natural vs. stamp sand over 17 days, while lake trout eggs hatched earlier and developed faster when incubated over stamp sand, yet showed similar development over a 163 day period. Copper from stamp sand appears to impact amphibians more than fish species in this study. These results will help determine what impact stamp sand has on organisms found throughout the Keweenaw Peninsula which encounter the material at some point in their life history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A shift in plant communities of the Water Conservation Areas (WCAs) within the Everglades has been linked to changes in hydrology and high levels of nutrient loading from surrounding agicultural areas. This has resulted in the encroachment of dense cattail stands (Typha domingensis) into areas that had previously been a ridge and slough landscape populated primarily by native sawgrass (Cladium jamaicense). In order to study ecological management solutions in this area, WCA-2A was broken into study plots; several of which became open water areas through the application of herbicide and burning regimens. The open water areas allowed for Chara spp (a submersed algal species) to replace Typha domingensis as the dominant macrophyte. This study investigated the polymer and ionic profiles of Chara spp, Typha domingensis and Cladium jamaicense and their contributions to detrital flocculent (floc) in the study plots where they are the dominant macrophytes. Floc is not only an important food source for aquatic species; it also supports many algal, fungal and bacterial communities. Data gathered in this study indicated that the floc sample from a phosphorus enriched open water study plot (EO1) where Chara spp was the dominant macrophyte may contain cell wall polymers from sources other than Chara spp (most likely Typha domingensis), while the chemical and polymeric profile of the floc of the study plot where Typha domingensis is the dominant macrophyte (EC1) suggests that the floc layer has contributions from algal sources as well as Typha domingensis. Additionally, monoclonal antibodies to Arabinoglalactan protein (AGP) and (1,4)-β-D galactan were identified as possible biomarkers for distinguishing algal dominated floc layers from layers dominated by emergent vegetation. Calcium labeling could be a useful tool for this as well because of the high amount of Ca2+ associated with Chara spp cell walls. When looking into the soluble phosphorus content of the macrophytes and paired floc samples of WCA-2A, it was found that Chara spp may be contributing a greater amount of Ca-bound phosphorus to floc layers where it is the dominant macrophyte when compared to floc layers from study plots dominated by emergent macrophytes. Floc layers also appear to be acting as a nutrient sink for soluble phosphorus. The findings of this study support the overall hypothesis that the shift from native emergent macrophyte communities to submersed macrophyte communities in study sites of the northern Everglades is affecting the polymeric/chemical profile and ionic content of detrital floc layers. The effects of this shift may contribute to changes in complex flocculent community dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I utilized state the art remote sensing and GIS (Geographical Information System) techniques to study large scale biological, physical and ecological processes of coastal, nearshore, and offshore waters of Lake Michigan and Lake Superior. These processes ranged from chlorophyll a and primary production time series analysies in Lake Michigan to coastal stamp sand threats on Buffalo Reef in Lake Superior. I used SeaWiFS (Sea-viewing Wide Field-of-view Sensor) satellite imagery to trace various biological, chemical and optical water properties of Lake Michigan during the past decade and to investigate the collapse of early spring primary production. Using spatial analysis techniques, I was able to connect these changes to some important biological processes of the lake (quagga mussels filtration). In a separate study on Lake Superior, using LiDAR (Light Detection and Ranging) and aerial photos, we examined natural coastal erosion in Grand Traverse Bay, Michigan, and discussed a variety of geological features that influence general sediment accumulation patterns and interactions with migrating tailings from legacy mining. These sediments are moving southwesterly towards Buffalo Reef, creating a threat to the lake trout and lake whitefish breeding ground.