3 resultados para 4000

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two volcanic debris avalanche deposits (VDADs), both attributed to sector collapse at Volcán Barú, Panama, have been identified after an investigation of deposits that covered more than a thousand square kilometers. The younger Barriles Deposit is constrained by two radiocarbon ages that are ~9 ka; the older Caisán Deposit is at or beyond the radiocarbon range, >43,500 ybp. The total runout length of the Caisán Deposit was ~50 km and it covers 1190 km2. The Barriles Deposit extended to about 45 km and covered an area of 966 km2, overlapping most of the Caisán. The VDADs are blanketed by pyroclastic deposits and contain a predominance of andesitic material likely representing volcanic dome rock which accumulated above the active vent at Barú before collapsing. Despite heavy vegetation in the field area, over 4000 individual hummocks were digitized from aerial photography. Statistical analysis of hummock locations and geometries depict flow patterns of highly- fragmented material reflecting the effects of underlying topography and also help to define the limit of Barriles’ shorter termination. Barriles and Caisán are primarily unconfined, subaerial volcanic deposits that are among the world’s most voluminous. Calculated through two different geospatial processes, thickness values from field measurements and inferences yield volumes >30 km23 for both deposits. VDADs of comparable scale come from Mount Shasta, USA; Socompa, Chile/Argentina; and Shiveluch, Russia. Currently, the modern edifice is 200-400m lower than the pre-collapse Barriles and Caisán summits and only 16-25% of the former edifice has been replaced since the last failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In-cylinder pressure transducers have been used for decades to record combustion pressure inside a running engine. However, due to the extreme operating environment, transducer design and installation must be considered in order to minimize measurement error. One such error is caused by thermal shock, where the pressure transducer experiences a high heat flux that can distort the pressure transducer diaphragm and also change the crystal sensitivity. This research focused on investigating the effects of thermal shock on in-cylinder pressure transducer data quality using a 2.0L, four-cylinder, spark-ignited, direct-injected, turbo-charged GM engine. Cylinder four was modified with five ports to accommodate pressure transducers of different manufacturers. They included an AVL GH14D, an AVL GH15D, a Kistler 6125C, and a Kistler 6054AR. The GH14D, GH15D, and 6054AR were M5 size transducers. The 6125C was a larger, 6.2mm transducer. Note that both of the AVL pressure transducers utilized a PH03 flame arrestor. Sweeps of ignition timing (spark sweep), engine speed, and engine load were performed to study the effects of thermal shock on each pressure transducer. The project consisted of two distinct phases which included experimental engine testing as well as simulation using a commercially available software package. A comparison was performed to characterize the quality of the data between the actual cylinder pressure and the simulated results. This comparison was valuable because the simulation results did not include thermal shock effects. All three sets of tests showed the peak cylinder pressure was basically unaffected by thermal shock. Comparison of the experimental data with the simulated results showed very good correlation. The spark sweep was performed at 1300 RPM and 3.3 bar NMEP and showed that the differences between the simulated results (no thermal shock) and the experimental data for the indicated mean effective pressure (IMEP) and the pumping mean effective pressure (PMEP) were significantly less than the published accuracies. All transducers had an IMEP percent difference less than 0.038% and less than 0.32% for PMEP. Kistler and AVL publish that the accuracy of their pressure transducers are within plus or minus 1% for the IMEP (AVL 2011; Kistler 2011). In addition, the difference in average exhaust absolute pressure between the simulated results and experimental data was the greatest for the two Kistler pressure transducers. The location and lack of flame arrestor are believed to be the cause of the increased error. For the engine speed sweep, the torque output was held constant at 203 Nm (150 ft-lbf) from 1500 to 4000 RPM. The difference in IMEP was less than 0.01% and the PMEP was less than 1%, except for the AVL GH14D which was 5% and the AVL GH15DK which was 2.25%. A noticeable error in PMEP appeared as the load increased during the engine speed sweeps, as expected. The load sweep was conducted at 2000 RPM over a range of NMEP from 1.1 to 14 bar. The difference in IMEP values were less 0.08% while the PMEP values were below 1% except for the AVL GH14D which was 1.8% and the AVL GH15DK which was at 1.25%. In-cylinder pressure transducer data quality was effectively analyzed using a combination of experimental data and simulation results. Several criteria can be used to investigate the impact of thermal shock on data quality as well as determine the best location and thermal protection for various transducers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric aerosol water-soluble organic compounds (WSOC) exist in a complex mixture of thousands of organic compounds which may have a significant influence on the climate-relevant properties of the atmospheric aerosol. To understand the potential influences, the ambient aerosol was collected at a nonurban mountainous site near Steamboat Springs, CO. The WSOC fraction was analyzed using positive and negative electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 2400 and 4000 molecular formulas were identified from the detected positive and negative ions, respectively. The formulas contained carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) atoms over the mass range of 100-800 Da in both ionization modes. The number range of double bond equivalents (DBE), the mean O:C, H:C, and oxidation state of carbon for the positive ions were 0 – 18, 0.25 ± 0.15, 1.39 ± 0.29, and -0.89 ± 0.23, respectively. Comparatively, the negative ion values were 0 – 14, 0.53 ± 0.20, 1.48 ± 0.30, and -0.41 ± 0.45, respectively. Overall, the positive ion molecular formulas were less oxygenated than negative ions as seen with the lower O:C and OSc values. Molecular formulas of the positive ions classified as aliphatic, olefinic, and aromatic compound classes based on the aromaticity index values. Aliphatic compounds were the CHNO and CHO formulas that had mean DBE values of about 5 and 3, respectively. However, a majority of the CHOS, CHNOS, and CHS formulas were defined as olefinic compounds and had mean DBE values of about 12, 13, and 10, respectively. Overall, more than half of the assigned molecular formulas contained sulfur and were olefinic to aromatic compounds with a DBE range of 7-18. Source of the unsaturated sulfur containing compounds is currently unknown. Several nitrogen containing compounds were in common with the field and laboratory studies of the biomass burning aerosol and aged secondary organic aerosol products of the limonene ozonolysis.