4 resultados para 3D virtual human

em Digital Commons - Michigan Tech


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The demand for consumer goods in the developing world continues to rise as populations and economies grow. As designers, manufacturers, and consumers look for ways to address this growing demand, many are considering the possibilities of 3D printing. Due to 3D printing’s flexibility and relative mobility, it is speculated that 3D printing could help to meet the growing demands of the developing world. While the merits and challenges of distributed manufacturing with 3D printing have been presented, little work has been done to determine the types of products that would be appropriate for such manufacturing. Inspired by the author’s two years of Peace Corps service in the Tanzania and the need for specialty equipment for various projects during that time, an in-depth literature search is undertaken to better understand and summarize the process and capabilities of 3D printing. Human-centered design considerations are developed to focus on the product desirability, the technical feasibility, and the financial viability of using 3D printing within Tanzania. Beginning with concerns of what Tanzanian consumers desire, many concerns later arise in regards to the feasibility of creating products that would be sufficient in strength and quality for the demands of developing world consumers. It is only after these concerns are addressed that the viability of products can be evaluated from an economic perspective. The larger impacts of a product beyond its use are vital in determining how it will affect the social, economic, and environmental well-being of a developing nation such as Tanzania. Thus technology specific criteria are necessary for assessing and quantifying the broader impacts that a 3D-printed product can have within its ecosystem, and appropriate criteria are developed for this purpose. Both sets of criteria are then demonstrated and tested while evaluating the desirability, feasibility, viability, and sustainability of printing a piece of equipment required for the author’s Peace Corps service: a set of Vernier calipers. Required for science educators throughout the country, specialty equipment such as calipers initially appear to be an ideal candidate for 3D printing, though ultimately the printing of calipers is not recommended due to current restrictions in the technology. By examining more specific challenges and opportunities of the products 3D printing can produce, it can be better determined what place 3D printing will have in manufacturing for the developing world. Furthermore, the considerations outlined in this paper could be adapted for other manufacturing technologies and regions of the world, as human centered design and sustainability will be critical in determining how to supply the developing world with the consumer goods it demands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Though 3D computer graphics has seen tremendous advancement in the past two decades, most available mechanisms for computer interaction in 3D are high cost and targeted for industry and virtual reality applications. Recent advances in Micro-Electro-Mechanical-System (MEMS) devices have brought forth a variety of new low-cost, low-power, miniature sensors with high accuracy, which are well suited for hand-held devices. In this work a novel design for a 3D computer game controller using inertial sensors is proposed, and a prototype device based on this design is implemented. The design incorporates MEMS accelerometers and gyroscopes from Analog Devices to measure the three components of the acceleration and angular velocity. From these sensor readings, the position and orientation of the hand-held compartment can be calculated using numerical methods. The implemented prototype is utilizes a USB 2.0 compliant interface for power and communication with the host system. A Microchip dsPIC microcontroller is used in the design. This microcontroller integrates the analog to digital converters, the program memory flash, as well as the core processor, on a single integrated circuit. A PC running Microsoft Windows operating system is used as the host machine. Prototype firmware for the microcontroller is developed and tested to establish the communication between the design and the host, and perform the data acquisition and initial filtering of the sensor data. A PC front-end application with a graphical interface is developed to communicate with the device, and allow real-time visualization of the acquired data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aging population has become a burning issue for all modern societies around the world recently. There are two important issues existing now to be solved. One is how to continuously monitor the movements of those people having suffered a stroke in natural living environment for providing more valuable feedback to guide clinical interventions. The other one is how to guide those old people effectively when they are at home or inside other buildings and to make their life easier and convenient. Therefore, human motion tracking and navigation have been active research fields with the increasing number of elderly people. However, motion capture has been extremely challenging to go beyond laboratory environments and obtain accurate measurements of human physical activity especially in free-living environments, and navigation in free-living environments also poses some problems such as the denied GPS signal and the moving objects commonly presented in free-living environments. This thesis seeks to develop new technologies to enable accurate motion tracking and positioning in free-living environments. This thesis comprises three specific goals using our developed IMU board and the camera from the imaging source company: (1) to develop a robust and real-time orientation algorithm using only the measurements from IMU; (2) to develop a robust distance estimation in static free-living environments to estimate people’s position and navigate people in static free-living environments and simultaneously the scale ambiguity problem, usually appearing in the monocular camera tracking, is solved by integrating the data from the visual and inertial sensors; (3) in case of moving objects viewed by the camera existing in free-living environments, to firstly design a robust scene segmentation algorithm and then respectively estimate the motion of the vIMU system and moving objects. To achieve real-time orientation tracking, an Adaptive-Gain Orientation Filter (AGOF) is proposed in this thesis based on the basic theory of deterministic approach and frequency-based approach using only measurements from the newly developed MARG (Magnet, Angular Rate, and Gravity) sensors. To further obtain robust positioning, an adaptive frame-rate vision-aided IMU system is proposed to develop and implement fast vIMU ego-motion estimation algorithms, where the orientation is estimated in real time from MARG sensors in the first step and then used to estimate the position based on the data from visual and inertial sensors. In case of the moving objects viewed by the camera existing in free-living environments, a robust scene segmentation algorithm is firstly proposed to obtain position estimation and simultaneously the 3D motion of moving objects. Finally, corresponding simulations and experiments have been carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scaphoid is one of the 8 carpal bones found adjacent to the thumb supported proximally by Radius bone. During the free fall, on outstretched hand, the impact load gets transferred to the scaphoid at its free anterior end. Unique arrangement of other carpal bones in the palm is also one of the reasons for the load to get transferred to scaphoid. About half of the total load acting upon carpal bone gets transferred to scaphoid at its distal pole. There are about 10 to 12 clinically observed fracture pattern in the scaphoid due to free fall. The aim of the study is to determine the orientation of the load, magnitude of the load and the corresponding fracture pattern. This study includes both static and dynamic finite element models validated by experiments. The scaphoid model has been prepared from CT scans of a 27 year old person. The 2D slices of the CT scans have been converted to 3D model by using MIMICS software. There are four cases of loading studied which are considered to occur clinically more frequently. In case (i) the load is applied at the posterior end at distal pole whereas in case (ii), (iii) and (iv), the load is applied at anterior end at different directions. The model is given a fixed boundary condition at the region which is supported by Radius bone during the impact. Same loading and boundary conditions have been used in both static and dynamic explicit finite element analysis. The site of fracture initiation and path of fracture propagation have been identified by using max principal stress / gradient and max principal strain / gradient criterion respectively in static and dynamic explicit finite element analysis. Static and dynamic impact experiments were performed on the polyurethane foam specimens to validate the finite element results. Experimental results such as load at fracture, site of fracture initiation and path of fracture propagation have been compared with the results of finite element analysis. Four different types of fracture patterns observed in clinical studies have been identified in this study.