3 resultados para 340213 Economic Development and Growth
em Digital Commons - Michigan Tech
Resumo:
The purpose of this report is to create the foundation for further study of a market-based approach to 3D printing as an instrument for economic development in Ghana. The delivery of improved products and services to the most underserved markets is needed to spur economic activity and improve standards of living. The relationship between economic development and the advancement of technology is considered within the context of Ghana. An opportunity for market entry exists within both the bottom of the economic pyramid and the mid-segment market. 3D printing (additive manufacturing) has proven to be a disruptive technology that has demonstrated an ability to expedite the speed of innovations and create products that were previously not possible. An investigation of how 3D printers can be used to create improved products for the most underserved markets within Ghana is presented. Questions are asked to elucidate how and when adoption of 3D printers and 3D printed products may occur in the future. Based upon the existing barriers to adoption, 3D printing technology must improve before widespread adoption will occur in Ghana.
Resumo:
Chapter 1. The Action Research in this report was to focus on improving the reading comprehension of students with expository text in relation to identifying the main idea and supporting details. Students were given an expository text to read and identify main idea and 2 -3 supporting details as a pre assessment. Students were provided instruction and support in DRTA (Directed Reading Thinking Activity) and SQ3R (Survey, Question, Read, Recite, Review) methodology to identify the Main Idea and supporting details of a selected expository text for both pre & posttest. Results were compiled and analyzed on the effectiveness of the strategies by overall student growth in accurately identifying the Main Idea and being able to state at least 2 supporting details. Analysis of the data will show that the methods were effective in middle school students’ ability to read and extrapolate the necessary information from expository text. Chapter 2 is a reflective essay on the MiTEP Michigan Teacher Excellence Program and its impact on my teaching practices, lesson delivery and leadership development.
Resumo:
Hardwoods comprise about half of the biomass of forestlands in North America and present many uses including economic, ecological and aesthetic functions. Forest trees rely on the genetic variation within tree populations to overcome the many biotic, abiotic, anthropogenic factors which are further worsened by climate change, that threaten their continued survival and functionality. To harness these inherent genetic variations of tree populations, informed knowledge of the genomic resources and techniques, which are currently lacking or very limited, are imperative for forest managers. The current study therefore aimed to develop genomic microsatellite markers for the leguminous tree species, honey locust, Gleditsia triacanthos L. and test their applicability in assessing genetic variation, estimation of gene flow patterns and identification of a full-sib mapping population. We also aimed to test the usefulness of already developed nuclear and gene-based microsatellite markers in delineation of species and taxonomic relationships between four of the taxonomically difficult Section Lobatae species (Quercus coccinea, Q. ellipsoidalis, Q. rubra and Q. velutina. We recorded 100% amplification of G. triacanthos genomic microsatellites developed using Illumina sequencing techniques in a panel of seven unrelated individuals with 14 of these showing high polymorphism and reproducibility. When characterized in 36 natural population samples, we recorded 20 alleles per locus with no indication for null alleles at 13 of the 14 microsatellites. This is the first report of genomic microsatellites for this species. Honey locust trees occur in fragmented populations of abandoned farmlands and pastures and is described as essentially dioecious. Pollen dispersal if the main source of gene flow within and between populations with the ability to offset the effects of random genetic drift. Factors known to influence gene include fragmentation and degree of isolation, which make the patterns gene flow in fragmented populations of honey locust a necessity for their sustainable management. In this follow-up study, we used a subset of nine of the 14 developed gSSRs to estimate gene flow and identify a full-sib mapping population in two isolated fragments of honey locust. Our analyses indicated that the majority of the seedlings (65-100% - at both strict and relaxed assignment thresholds) were sired by pollen from outside the two fragment populations. Only one selfing event was recorded confirming the functional dioeciousness of honey locust and that the seed parents are almost completely outcrossed. From the Butternut Valley, TN population, pollen donor genotypes were reconstructed and used in paternity assignment analyses to identify a relatively large full-sib family comprised of 149 individuals, proving the usefulness of isolated forest fragments in identification of full-sib families. In the Ames Plantation stand, contemporary pollen dispersal followed a fat-tailed exponential-power distribution, an indication of effective gene flow. Our estimate of δ was 4,282.28 m, suggesting that insect pollinators of honey locust disperse pollen over very long distances. The high proportion of pollen influx into our sampled population implies that our fragment population forms part of a large effectively reproducing population. The high tendency of oak species to hybridize while still maintaining their species identity make it difficult to resolve their taxonomic relationships. Oaks of the section Lobatae are famous in this regard and remain unresolved at both morphological and genetic markers. We applied 28 microsatellite markers including outlier loci with potential roles in reproductive isolation and adaptive divergence between species to natural populations of four known interfertile red oaks, Q. coccinea, Q. ellpsoidalis, Q. rubra and Q. velutina. To better resolve the taxonomic relationships in this difficult clade, we assigned individual samples to species, identified hybrids and introgressive forms and reconstructed phylogenetic relationships among the four species after exclusion of genetically intermediate individuals. Genetic assignment analyses identified four distinct species clusters, with Q. rubra most differentiated from the three other species, but also with a comparatively large number of misclassified individuals (7.14%), hybrids (7.14%) and introgressive forms (18.83%) between Q. ellipsoidalis and Q. velutina. After the exclusion of genetically intermediate individuals, Q. ellipsoidalis grouped as sister species to the largely parapatric Q. coccinea with high bootstrap support (91 %). Genetically intermediate forms in a mixed species stand were located proximate to both potential parental species, which supports recent hybridization of Q. velutina with both Q. ellipsoidalis and Q. rubra. Analyses of genome-wide patterns of interspecific differentiation can provide a better understanding of speciation processes and taxonomic relationships in this taxonomically difficult group of red oak species.