2 resultados para 300603 Pests, Health and Diseases
em Digital Commons - Michigan Tech
Resumo:
Inductive-capacitive (LC) resonant circuit sensors are low-cost, wireless, durable, simple to fabricate and battery-less. Consequently, they are well suited to sensing applications in harsh environments or in situations where large numbers of sensors are needed. They are also advantageous in applications where access to the sensor is limited or impossible or when sensors are needed on a disposable basis. Due to their many advantages, LC sensors have been used for sensing a variety of parameters including humidity, temperature, chemical concentrations, pH, stress/pressure, strain, food quality and even biological growth. However, current versions of the LC sensor technology are limited to sensing only one parameter. The purpose of this work is to develop new types of LC sensor systems that are simpler to fabricate (hence lower cost) or capable of monitoring multiple parameters simultaneously. One design presented in this work, referred to as the multi-element LC sensor, is able to measure multiple parameters simultaneously using a second capacitive element. Compared to conventional LC sensors, this design can sense multiple parameters with a higher detection range than two independent sensors while maintaining the same overall sensor footprint. In addition, the two-element sensor does not suffer from interference issues normally encountered while implementing two LC sensors in close proximity. Another design, the single-spiral inductive-capacitive sensor, utilizes the parasitic capacitance of a coil or spring structure to form a single layer LC resonant circuit. Unlike conventional LC sensors, this design is truly planar, thus simplifying its fabrication process and reducing sensor cost. Due to the simplicity of this sensor layout it will be easier and more cost-effective for embedding in common building or packaging materials during manufacturing processes, thereby adding functionality to current products (such as drywall sheets) while having a minor impact on overall unit cost. These modifications to the LC sensor design significantly improve the functionality and commercial feasibility of this technology, especially for applications where a large array of sensors or multiple sensing parameters are required.
Resumo:
In 2002, motivated largely by the uncontested belief that the private sector would operate more efficiently than the government, the government of Cameroon initiated a major effort to privatize some of Cameroon’s largest, state-run industries. One of the economic sectors affected by this privatization was tea production. In October 2002, the Cameroon Tea Estate (CTE), a privately owned, tea-cultivating organization, bought the Tole Tea Estate from the Cameroon Development Corporation (CDC), a government-owned entity. This led to an increase in the quantity of tea production; however, the government and CTE management appear not to have fully considered the risks of privatization. Using classical rhetorical theory, Richard Weaver’s conception of “god terms” (or “uncontested terms”), and John Ikerd’s ethical approach to risk communication, this study examines risks to which Tole Tea Estate workers were exposed and explores rhetorical strategies that workers employed in expressing their discontent. Sources for this study include online newspapers, which were selected on the basis of their reputation and popularity in Cameroon. Analysis of the data shows that, as a consequence of privatization, Tole Tea Estate workers were exposed to three basic risks: marginalization, unfulfilled promises, and poor working conditions. Workers’ reactions to these risks tended to grow more emotional as management appeared to ignore their demands. The study recommends that respect for labor law, constructive dialogue among stakeholders, and transparency might serve as guiding principles in responding to the politics of privatization in developing countries.