3 resultados para 3-PHENOXYBENZOIC ACID
em Digital Commons - Michigan Tech
Resumo:
In this study, we isolated eight copper-resistant bacteria from Torch Lake sediment contaminated by copper mine tailings (stamp sand). Sequence analysis of gyrB and rpoD genes revealed that these organisms are closer to various Pseudomonas species. These eight bacterial isolates were also resistant to zinc, cesium, lead, arsenate and mercury. Further characterization showed that all the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. Genes involved in copper resistance of Pseudomonas sp. TLC 6-6.5-4 was analyzed by transposon mutational analysis. Two copper sensitive mutants with significant reduction in copper resistance were identified: CSM1, a mutant disrupted in trp A gene (tryptophan synthase alpha subunit); CSM2, a mutant disrupted in clpA gene (ATP-dependent Clp protease). Proteomic and metabolomic analysis were performed to identify biochemical and molecular mechanisms involved in copper resistance using CSM2 due to its lower minimum inhibitory concentration compared with CSM1 and the wild type. The effect of different bacterial inoculation methods on plant growth, copper uptake and soil enzyme activities was investigated. Four different delivery methods were used including soil inoculation (before or after plant emergence), seed coating and root dipping. Soil inoculation before sowing seeds and coating seeds with PGPB led to better growth of maize, higher copper uptake and an increase in soil invertase and dehydrogenase activities. Proteomic and metabolomic analyses were performed to investigate the effect of bacterial inoculation on maize grown in normal soil and stamp sand. Our results revealed that bacterial inoculation led to environment-dependent effects on maize proteome and metabolome.
Resumo:
The hydrogen ion activity (pH) is a very important parameter in environment monitoring, biomedical research and other applications. Optical pH sensors have several advantages over traditional potentiometric pH measurement, such as high sensitivity, no need of constant calibration, easy for miniaturization and possibility for remote sensing. Several pH indicators has been successfully immobilized in three different solid porous materials to use as pH sensing probes. The fluorescent pH indicator fluorescein-5-isothiocyanate (FITC) was covalently bound onto the internal surface of porous silica (pore size ~10 nm) and retained its pH sensitivity. The excited state pK* a of FITC in porous silica (5.58) was slightly smaller than in solution (5.68) due to the free silanol groups (Si-OH) on the silica surface. The pH sensitive range for this probe is pH 4.5 - 7.0 with an error less than 0.1 pH units. The probe response was reproducible and stable for at least four month, stored in DI water, but exhibit a long equilibrium of up to 100 minutes. Sol-gel based pH sensors were developed with immobilization of two fluorescent pH indicators fluorescein-5-(and-6)-sulfonic acid, trisodium salt (FS) and 8-hydroxypyrene- 1,3,6-trisulfonic acid (HPTS) through physical entrapment. Prior to immobilization, the indicators were ion-paired with a common surfactant hexadecyltrimethylammonium bromide (CTAB) in order to prevent leaching. The sol-gel films were synthesized through the hydrolysis of two different precursors, ethyltriethoxysilane (ETEOS) and 3- glycidoxypropyltrimethoxysilane (GPTMS) and deposited on a quartz slide through spin coating. The pK a of the indicators immobilized in sol-gel films was much smaller than in solutions due to silanol groups on the inner surface of the sol-gel films and ammonium groups from the surrounding surfactants. Unlike in solution, the apparent pK a of the indicators in sol-gel films increased with increasing ionic strength. The equilibrium time for these sensors was within 5 minutes (with film thickness of ~470 nm). Polyethylene glycol (PEG) hydrogel was of interest for optical pH sensor development because it is highly proton permeable, transparent and easy to synthesize. pH indicators can be immobilized in hydrogel through physical entrapment and copolymerization. FS and HPTS ion-pairs were physically entrapped in hydrogel matrix synthesized via free radical initiation. For covalent immobilization, three indicators, 6,8-dihydroxypyrene-1,3- disulfonic acid (DHPDS), 2,7-dihydroxynaphthalene-3,6-disulfonic acid (DHNDS) and cresol red were first reacted with methacrylic anhydride (MA) to form methacryloylanalogs for copolymerization. These hydrogels were synthesized in aqueous solution with a redox initiation system. The thickness of the hydrogel film is controlled as ~ 0.5 cm and the porosity can be adjusted with the percentage of polyethylene glycol in the precursor solutions. The pK a of the indicators immobilized in the hydrogel both physically and covalently were higher than in solution due to the medium effect. The sensors are stable and reproducible with a short equilibrium time (less than 4 minutes). In addition, the color change of cresol red immobilized hydrogel is vivid from yellow (acidic condition) to purple (basic condition). Due to covalently binding, cresol red was not leaching out from the hydrogel, making it a good candidate of reusable "pH paper".
Resumo:
Mo(VI) oxo complexes have been persistently sought after as epoxidation catalysts. Further, Mo(V) oxo clusters of the form M4(µ3-X)4 (M = transition metal, X = O, S) have been rigorously studied due to their remarkable structures and also their usefulness as models for electronic studies. The syntheses and characterizations of new Mo(VI) and Mo(V) oxo complexes have been described in this dissertation. Two new complexes MoO2Cl2Ph2P(O)CH2COOH and MoO2Cl2Ph2P(O)C6H4tBuS(O) were synthesized from reactions of “MoO2Cl2” with ligands Ph2P(O)CH2COOH and Ph2P(O)C6H4tBuS(O). Tetrameric packing arrangements comprised of hydrogen bonds were obtained for the complex MoO2Cl2Ph2P(O)CH2COOH and the ligand Ph2P(O)CH2COOH. Further the stability of an Mo-O bond was preferred over the Mo-S bond even though this resulted in the formation of a more strained seven membered ring. Tetranuclear Mo(V) complexes of the form [Mo4(µ3-O)4(µ-O2PR2)4O4], (PR2 = PPh2, PMe2) were synthesized using reactions of MoO2(acac)2 with diphenyl and dimethyl phosphinic acids, in ethanol. In the crystal structure of these complexes four Mo=O units are interconnected by four triply bridging oxygen atoms and bridging phosphinate ligands. The complex exhibited fourfold symmetry as evidenced by a single 31P NMR peak for the P atoms in the coordinated ligands. Reaction of WO2(acac)2 with Ph2POOH in methanol resulted in a dimeric W(VI) complex [(CH3O)2(O)W(µ-O)( µ-O2PPh2)2W(O)(CH3O)2] which contained a packing disorder in its crystal structure. Similar reactions of MoO2(acac)2 with benzoic acid derivatives resulted in dimeric complexes of the form [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2CR)] (R = C6H5, (o-OH)C6H4, (p-Cl)C6H4, (2,4-(OH)2)C6H3, (o-I)C6H4) and one tetrameric complex [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2C)C6H4(p-µ-O2C)Mo2O2(acac)2(µ-O)(µ-OC2H5)] with terephthalic acid. 1H NMR proved very useful in the prediction of the formation of dimers with the substituted benzoic acids, which were also confirmed by elemental analyses. The reductive capability of ethanol proved instrumental in the syntheses of Mo(V) tetrameric and dimeric clusters. Synthetic details, IR, 1H and 31P NMR spectroscopy and elemental analyses are reported for all new complexes. Further, single crystal X-ray structures of MoO2Cl2Ph2P(O)CH2COOH, MoO2Cl2Ph2P(O)C6H4tBuS(O), [Mo4(µ3-O)4(µ-O2PR2)4O4], (PR2 = PPh2, PMe2), [(CH3O)2(O)W(µ-O)( µ-O2PPh2)2W(O)(CH3O)2] and [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2CR)] (R = C6H5, (o-OH)C6H4) are also presented.