3 resultados para 2ND ORDER PERIODIC PROBLEMS
em Digital Commons - Michigan Tech
Resumo:
The numerical solution of the incompressible Navier-Stokes equations offers an alternative to experimental analysis of fluid-structure interaction (FSI). We would save a lot of time and effort and help cut back on costs, if we are able to accurately model systems by these numerical solutions. These advantages are even more obvious when considering huge structures like bridges, high rise buildings or even wind turbine blades with diameters as large as 200 meters. The modeling of such processes, however, involves complex multiphysics problems along with complex geometries. This thesis focuses on a novel vorticity-velocity formulation called the Kinematic Laplacian Equation (KLE) to solve the incompressible Navier-stokes equations for such FSI problems. This scheme allows for the implementation of robust adaptive ordinary differential equations (ODE) time integration schemes, allowing us to tackle each problem as a separate module. The current algortihm for the KLE uses an unstructured quadrilateral mesh, formed by dividing each triangle of an unstructured triangular mesh into three quadrilaterals for spatial discretization. This research deals with determining a suitable measure of mesh quality based on the physics of the problems being tackled. This is followed by exploring methods to improve the quality of quadrilateral elements obtained from the triangles and thereby improving the overall mesh quality. A series of numerical experiments were designed and conducted for this purpose and the results obtained were tested on different geometries with varying degrees of mesh density.
Resumo:
The numerical solution of the incompressible Navier-Stokes Equations offers an effective alternative to the experimental analysis of Fluid-Structure interaction i.e. dynamical coupling between a fluid and a solid which otherwise is very complex, time consuming and very expensive. To have a method which can accurately model these types of mechanical systems by numerical solutions becomes a great option, since these advantages are even more obvious when considering huge structures like bridges, high rise buildings, or even wind turbine blades with diameters as large as 200 meters. The modeling of such processes, however, involves complex multiphysics problems along with complex geometries. This thesis focuses on a novel vorticity-velocity formulation called the KLE to solve the incompressible Navier-stokes equations for such FSI problems. This scheme allows for the implementation of robust adaptive ODE time integration schemes and thus allows us to tackle the various multiphysics problems as separate modules. The current algorithm for KLE employs a structured or unstructured mesh for spatial discretization and it allows the use of a self-adaptive or fixed time step ODE solver while dealing with unsteady problems. This research deals with the analysis of the effects of the Courant-Friedrichs-Lewy (CFL) condition for KLE when applied to unsteady Stoke’s problem. The objective is to conduct a numerical analysis for stability and, hence, for convergence. Our results confirmthat the time step ∆t is constrained by the CFL-like condition ∆t ≤ const. hα, where h denotes the variable that represents spatial discretization.
Resumo:
The maximum principle is an important property of solutions to PDE. Correspondingly, it's of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO scheme, and then propose a new parametrized MPP high order finite difference(FD) WENO framework, which is generalized from the one solving hyperbolic conservation laws. A formal analysis is presented to show that a third order finite difference scheme with this parametrized MPP flux limiters maintains the third order accuracy without extra CFL constraint when the low order monotone flux is chosen appropriately. Numerical tests in both one and two dimensional cases are performed on the simulation of the incompressible Navier-Stokes equations in vorticity stream-function formulation and several other problems to show the effectiveness of the proposed method.