2 resultados para 1166
em Digital Commons - Michigan Tech
Resumo:
Forested wetlands throughout the world are valuable habitats; especially in relatively species-poor northern regions, they can be considered biological hotspots. Unfortunately, these areas have been degraded and destroyed. In recent years, however, the biological importance of wetlands has been increasingly recognized, resulting in the desire to restore disturbed habitats or create in place of destroyed ones. Restoration work is taking place across the globe in a diversity of wetland types, and research must be conducted to determine successful techniques. As a result, two studies of the effects of wetland restoration and creation were conducted in forested wetlands in northern Michigan and southern Finland. In North America, northern white-cedar wetlands have been declining in area, despite attempts to regenerate them. Improved methods for successfully establishing northern white-cedar are needed; as a result, the target of the first study was to determine if creating microtopography could be beneficial for white-cedar recruitment and growth. In northern Europe, spruce swamp forests have become a threatened ecosystem due to extensive drainage for forestry. As part of the restoration of these habitats, i.e. rewetting through ditch blocking, Sphagnum mosses are considered to be a critical element to re-establish, and an in-depth analysis of how Sphagnum is responding to restoration in spruce swamp forests has not been previously done. As a result, the aim of the second study was to investigate the ecophysiological functioning of Sphagnum and feather mosses across a gradient of pristine, drained, and restored boreal spruce swamp forests.
Resumo:
Due to warmer and drier conditions, wildland fire has been increasing in extent into peatland ecosystems during recent decades. As such, there is an increasing need for broadly applicable tools to detect surface peat moisture, in order to ascertain the susceptibility of peat burning, and the vulnerability of deep peat consumption in the event of a wildfire. In this thesis, a field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss dominated peatlands. Relationships were developed correlating spectral indices to surface moisture as well as water table position. Spectral convolutions were also applied to the high resolution spectra to represent spectral sensitivity of earth observing sensors. Band ratios previously used to monitor surface moisture with these sensors were assessed. Strong relationships to surface moisture and water table position are evident for both the narrowband indices as well as broadened indices. This study also found a dependence of certain spectral relationships on changes in vegetation cover by leveraging an experimental vegetation manipulation. Results indicate broadened indices employing the 1450-1650 nm region may be less stable under changing vegetation cover than those located in the 1200 nm region.