2 resultados para 091007 Manufacturing Robotics and Mechatronics (excl. Automotive Mechatronics)

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a nitramine compound that has been used heavily by the military as an explosive. Manufacturing, use, and disposal of RDX have led to several contamination sites across the United States. RDX is both persistent in the environment and a threat to human health, making its remediation vital. The use of plants to extract RDX from the soil and metabolize it once it is in the plant tissue, is being considered as a possible solution. In the present study, the tropical grass Chrysopogon zizanioides was grown hydroponically in the presence RDX at 3 different concentration levels: 0.3, 1.1, and 2.26 ppm. The uptake of RDX was quantified by high performance liquid chromatography (HPLC) analysis of media samples taken every 6 hr during the first 24 hr and then daily over a 30-day experimental period. A rapid decrease in RDX concentration in the media of both controls and plant treatments was seen within the first 18 hours of the experiment with the greatest loss in RDX over time occurring within the first 6 hours of exposure. The loss was similar in both controls and plant exposures and possibly attributed to rapid uptake by the containers. A plant from one treatment at each of the three concentrations was harvested at Day 10, 20 and 30 throughout the experiment and extracted to determine the localization of RDX within the tissue and potentially identify any metabolites on the basis of differing retention times. Of the treatments containing 0.3, 1.1, and 2.26 ppm RDX, 13.1%, 18.3%, and 24.2% respectively, was quantified in vetiver extracts, with the majority of the RDX being localized to the roots. All plants not yet harvested were harvested on Day 30 of the experiment. A total of three plants exposed to each concentration level as well as the control, were extracted and analyzed with HPLC to determine amount of RDX taken up, localization of RDX within the plant tissue, and potentially identify any metabolites. Phytotoxicity of RDX to vetiver was also monitored. While a loss in biomass was observed in plants exposed to all the different concentrations of RDX, control plants grown in media not exposed to RDX showed the greatest biomass loss of all the treatments. There was also little variation in chlorophyll content between the different concentration treatments with RDX. This preliminary greenhouse study of RDX uptake 10 by Chrysopogon zizanioides will help indicate the potential ability of vetiver to serve as a plant system in the phytoremediation of RDX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is composed of three life-cycle analysis (LCA) studies of manufacturing to determine cumulative energy demand (CED) and greenhouse gas emissions (GHG). The methods proposed could reduce the environmental impact by reducing the CED in three manufacturing processes. First, industrial symbiosis is proposed and a LCA is performed on both conventional 1 GW-scaled hydrogenated amorphous silicon (a-Si:H)-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Using a recycling process that results in a silane loss of only 17 versus 85 percent, this results in a CED savings of 81,700 GJ and 290,000 GJ per year for single and tandem junction plants, respectively. This recycling process reduces the cost of raw silane by 68 percent, or approximately $22.6 and $79 million per year for a single and tandem 1 GW PV production facility, respectively. The results show environmental benefits of silane recycling centered around a-Si:H-based PV manufacturing plants. Second, an open-source self-replicating rapid prototype or 3-D printer, the RepRap, has the potential to reduce the environmental impact of manufacturing of polymer-based products, using distributed manufacturing paradigm, which is further minimized by the use of PV and improvements in PV manufacturing. Using 3-D printers for manufacturing provides the ability to ultra-customize products and to change fill composition, which increases material efficiency. An LCA was performed on three polymer-based products to determine the CED and GHG from conventional large-scale production and are compared to experimental measurements on a RepRap producing identical products with ABS and PLA. The results of this LCA study indicate that the CED of manufacturing polymer products can possibly be reduced using distributed manufacturing with existing 3-D printers under 89% fill and reduced even further with a solar photovoltaic system. The results indicate that the ability of RepRaps to vary fill has the potential to diminish environmental impact on many products. Third, one additional way to improve the environmental performance of this distributed manufacturing system is to create the polymer filament feedstock for 3-D printers using post-consumer plastic bottles. An LCA was performed on the recycling of high density polyethylene (HDPE) using the RecycleBot. The results of the LCA showed that distributed recycling has a lower CED than the best-case scenario used for centralized recycling. If this process is applied to the HDPE currently recycled in the U.S., more than 100 million MJ of energy could be conserved per annum along with significant reductions in GHG. This presents a novel path to a future of distributed manufacturing suited for both the developed and developing world with reduced environmental impact. From improving manufacturing in the photovoltaic industry with the use of recycling to recycling and manufacturing plastic products within our own homes, each step reduces the impact on the environment. The three coupled projects presented here show a clear potential to reduce the environmental impact of manufacturing and other processes by implementing complimenting systems, which have environmental benefits of their own in order to achieve a compounding effect of reduced CED and GHG.