3 resultados para ”Learning by doing”
em Digital Commons - Michigan Tech
Resumo:
The purpose of the study was to design, implement, and assess the effects of a teaching unit about fuel sources and chemical energy on students’ learning. The unit was designed to incorporate students’ experiences in a way that was aligned with the Michigan High School Content Expectations. The study was completed with all of the students taking General Chemistry in a rural Michigan high school in the 2010-11 school year. There were 138 participants total. The participants were mostly Caucasian and the majority were in the 11th grade. Of these, 77 constituted the experimental group and were taught the unit. The additional 61 participants in the control group were given the posttest only. Data was derived from the results of pre/post tests, final assessment projects, and the researcher’s observations. A pretest that contained questions about the fuel sources was administered at the beginning of the unit. An identical posttest was administered at the completion of the unit. A final assessment project required students to choose the best fuel source for the area, and support their opinion with facts and data from their research or the learning activities and labs performed in class. The results of the study revealed that the teaching unit did produce significant learning gains in the experimental group. The results also indicated that the teaching unit added value to the current General Chemistry curriculum by expanding what students were learning. The instructional goals of the unit were aligned with the Michigan High School Content Expectations. The results also revealed that the students were able to learn to support their thinking and decisions with explanations based on the data and labs. These are essential science literacy skills. The study supported the view that connecting the required curriculum with students’ experiences and interests was effective, and that students can learn important science literacy skills, such as providing support for arguments and communicating scientific explanations, when given adequate teacher support.
Resumo:
In this dissertation, the problem of creating effective large scale Adaptive Optics (AO) systems control algorithms for the new generation of giant optical telescopes is addressed. The effectiveness of AO control algorithms is evaluated in several respects, such as computational complexity, compensation error rejection and robustness, i.e. reasonable insensitivity to the system imperfections. The results of this research are summarized as follows: 1. Robustness study of Sparse Minimum Variance Pseudo Open Loop Controller (POLC) for multi-conjugate adaptive optics (MCAO). The AO system model that accounts for various system errors has been developed and applied to check the stability and performance of the POLC algorithm, which is one of the most promising approaches for the future AO systems control. It has been shown through numerous simulations that, despite the initial assumption that the exact system knowledge is necessary for the POLC algorithm to work, it is highly robust against various system errors. 2. Predictive Kalman Filter (KF) and Minimum Variance (MV) control algorithms for MCAO. The limiting performance of the non-dynamic Minimum Variance and dynamic KF-based phase estimation algorithms for MCAO has been evaluated by doing Monte-Carlo simulations. The validity of simple near-Markov autoregressive phase dynamics model has been tested and its adequate ability to predict the turbulence phase has been demonstrated both for single- and multiconjugate AO. It has also been shown that there is no performance improvement gained from the use of the more complicated KF approach in comparison to the much simpler MV algorithm in the case of MCAO. 3. Sparse predictive Minimum Variance control algorithm for MCAO. The temporal prediction stage has been added to the non-dynamic MV control algorithm in such a way that no additional computational burden is introduced. It has been confirmed through simulations that the use of phase prediction makes it possible to significantly reduce the system sampling rate and thus overall computational complexity while both maintaining the system stable and effectively compensating for the measurement and control latencies.
Resumo:
Bidirectional promoters regulate adjacent genes organized in a divergent fashion (head to head orientation). Several Reports pertaining to bidirectional promoters on a genomic scale exists in mammals. This work provides the essential background on theoretical and experimental work to carry out a genomic scale analysis of bidirectional promoters in plants. A computational study was performed to identify putative bidirectional promoters and the over-represented cis-regulatory motifs from three sequenced plant genomes: rice (Oryza sativa), Arabidopsis thaliana, and Populus trichocarpa using the Plant Cis-acting Regulatory DNA Elements (PLACE) and PLANT CARE databases. Over-represented motifs along with their possible function were described with the help of a few conserved representative putative bidirectional promoters from the three model plants. By doing so a foundation was laid for the experimental evaluation of bidirectional promoters in plants. A novel Agrobacterium tumefaciens mediated transient expression assay (AmTEA) was developed for young plants of different cereal species and the model dicot Arabidopsis thaliana. AmTEA was evaluated using five promoters (six constructs) and two reporter genes, gus and egfp. Efficacy and stability of AmTEA was compared with stable transgenics using the Arabidopsis DEAD-box RNA helicase family gene promoter. AmTEA was primarily developed to overcome the many problems associated with the development of transgenics and expression studies in plants. Finally a possible mechanism for the bidirectional activity of bidirectional promoters was highlighted. Deletion analysis using promoter-reporter gene constructs identified three rice promoters to be bidirectional. Regulatory elements located in the 5’- untranslated regions (UTR) of one of the genes of the divergent gene pair were found to be responsible for their bidirectional ctivity