996 resultados para Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Time-optimal response is an important and sometimes necessary characteristic of dynamic systems for specific applications. Power converters are widely used in different electrical systems and their dynamic response will affect the whole system. In many electrical systems like microgrids or voltage regulators which supplies sensitive loads fast dynamic response is a must. Minimum time is the fastest converter to compensate the step output reference or load change. Boost converters as one of the wildly used power converters in the electrical systems are aimed to be controlled in optimal time in this study. Linear controllers are not able to provide the optimal response for a boost converter however they are still useful and functional for other applications like reference tracking or stabilization. To obtain the fastest possible response from boost converters, a nonlinear control approach based on the total energy of the system is studied in this research. Total energy of the system considers as the basis for developing the presented method, since it is easy and accurate to measure besides that the total energy of the system represents the actual operating condition of the boost converter. The detailed model of a boost converter is simulated in MATLAB/Simulink to achieve the time optimal response of the boost converter by applying the developed method. The simulation results confirmed the ability of the presented method to secure the time optimal response of the boost converter under four different scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lighthouses are an important part of the industrial heritage of the Keweenaw Peninsula in Michigan. They functioned as an integrated system that facilitated shipping on Lake Superior and supported the growing industry of the Keweenaw Peninsula. For this reason, lighthouses can be considered as an overlapping boundary between the maritime and terrestrial landscapes. As shipping and industry changed, the lighthouse boundary also changed. Changes to the boundary are reflected in the contractors involved in the construction of lighthouses and the decisions they made with the resources, principally building materials and knowledge, which they had at their disposal. The decline of shipping on the Great Lakes due to the increased use of roads and railroads for commerce and transportation and the decline of industry on the Keweenaw due to the decreasing profitability of the mines are reflected in gradual end of lighthouses functioning as a network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple indices of biotic integrity and biological condition gradient models have been developed and validated to assess ecological integrity in the Laurentian Great Lakes Region. With multiple groups such as Tribal, Federal, and State agencies as well as scientists and local watershed management or river-focused volunteer groups collecting data for bioassessment it is important that we determine the comparability of data and the effectiveness of indices applied to these data for assessment of natural systems. We evaluated the applicability of macroinvertebrate and fish community indices for assessing site integrity. Site quality (i.e., habitat condition) could be classified differently depending on which index was applied. This highlights the need to better understand the metrics driving index variation as well as reference conditions for effective communication and use of indices of biotic integrity in the Upper Midwest. We found the macroinvertebrate benthic community index for the Northern Lakes and Forests Ecoregion and a coldwater fish index of biotic integrity for the Upper Midwest were most appropriate for use in the Big Manistee River watershed based on replicate sampling, ability to track trends over time and overall performance. We evaluated three sites where improper road stream crossings (culverts) were improved by replacing them with modern full-span structures using the most appropriate fish and macroinvertebrate IBIs. We used a before-after-control-impact paired series analytical design and found mixed results, with evidence of improvement in biotic integrity based on macroinvertebrate indices at some of the sites while most sites indicated no response in index score. Culvert replacements are often developed based on the potential, or the perception, that they will restore ecological integrity. As restoration practitioners, researchers and managers, we need to be transparent in our goals and objectives and monitor for those results specifically. The results of this research serve as an important model for the broader field of ecosystem restoration and support the argument that while biotic communities can respond to actions undertaken with the goal of overall restoration, practitioners should be realistic in their expectations and claims of predicted benefit, and then effectively evaluate the true impacts of the restoration activities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

June 2011 saw the first historic eruption of Nabro volcano, one of an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Due to its remote location, little was known about this event in terms of the quantity of erupted products and the timing and mechanisms of their emplacement. Geographic isolation, previous quiescence and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study are limited. Using free, publicly available satellite data, I examined rates of lava effusion and SO2 emission in order to quantify the amount of erupted products and understand the temporal evolution of the eruption, as well as explore what information can be gleaned about eruption mechanisms using remote sensing data. These data revealed a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This gave way to a period of rapid effusion, producing a ~17 km long lava flow, and a volume of ~22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. The 2011 eruption of Nabro lasted nearly 6 weeks, and may be considered the second largest historic eruption in Africa. Work such as this highlights the importance of satellite remote sensing for studying and monitoring volcanoes, particularly those in remote regions that may be otherwise inaccessible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is no doubt that sufficient energy supply is indispensable for the fulfillment of our fossil fuel crises in a stainable fashion. There have been many attempts in deriving biodiesel fuel from different bioenergy crops including corn, canola, soybean, palm, sugar cane and vegetable oil. However, there are some significant challenges, including depleting feedstock supplies, land use change impacts and food use competition, which lead to high prices and inability to completely displace fossil fuel [1-2]. In recent years, use of microalgae as an alternative biodiesel feedstock has gained renewed interest as these fuels are becoming increasingly economically viable, renewable, and carbon-neutral energy sources. One reason for this renewed interest derives from its promising growth giving it the ability to meet global transport fuel demand constraints with fewer energy supplies without compromising the global food supply. In this study, Chlorella protothecoides microalgae were cultivated under different conditions to produce high-yield biomass with high lipid content which would be converted into biodiesel fuel in tandem with the mitigation of high carbon dioxide concentration. The effects of CO2 using atmospheric and 15% CO2 concentration and light intensity of 35 and 140 µmol m-2s-1 on the microalgae growth and lipid induction were studied. The approach used was to culture microalgal Chlorella protothecoides with inoculation of 1×105 cells/ml in a 250-ml Erlenmeyer flask, irradiated with cool white fluorescent light at ambient temperature. Using these conditions we were able to determine the most suitable operating conditions for cultivating the green microalgae to produce high biomass and lipids. Nile red dye was used as a hydrophobic fluorescent probe to detect the induced intracellular lipids. Also, gas chromatograph mass spectroscopy was used to determine the CO2 concentrations in each culture flask using the closed continuous loop system. The goal was to study how the 15% CO2 concentration was being used up by the microalgae during cultivation. The results show that the condition of high light intensity of 140 µmol m-2s-1 with 15% CO2 concentration obtain high cell concentration of 7 x 105 cells mL-1 after culturing Chlorella protothecoides for 9 to 10 day in both open and closed systems respectively. Higher lipid content was estimated as indicated by fluorescence intensity with 1.3 to 2.5 times CO2 reduction emitted by power plants. The particle size of Chlorella protothecoides increased as well due to induction of lipid accumulation by the cells when culture under these condition (140 µmol m-2s-1 with 15% CO2 concentration).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

My dissertation emphasizes the use of narrative structuralism and narrative theories about storytelling in order to build a discourse between the fields of New Media and Rhetoric and Composition. Propp's morphological analysis and the breaking down of stories into component pieces aides in the discussion of storytelling as it appears in and is mediated by digital and computer technologies. New Media and Rhetoric and Composition are aided by shared concerns for textual production and consumption. In using the notion of "kairotic reading" (KR), I show the interconnectedness and interdisciplinarity required in the development of pedagogy utilized to teach students to develop into reflective practitioners that are aware of their rhetorical surroundings and can made sound judgments concerning their own message generation and consumption in the workplace. KR is a transferable skill that is beneficial to students and teachers alike. The dissertation research utilizes theories of New Media and New Media-influenced practitioners, including Jenkins' theory of convergence, Bourdieu's notion of taste, Gee's term "semiotic domains," and Manovich's "modification." These theoretical pieces are combined in order to show how KR can be extended by convergent narrative practices. In order to build connections with New Media, the consideration and inclusion of Kress and van Leeuwen's multimodality, Selber's "reflective practitioners," and Selfe's definition of multimodal composing allow for a greater establishment of conversation order to create a richer conversation around the implications of metacognitive development and practitioner reflexivity with scholars in New Media. My research also includes analysis of two popular media franchises Deborah Harkness' A Discovery of Witches and Fox's Bones television series to show similarities and differences among convergence-linked and multimodal narratives. Lastly, I also provide example assignments that can be taken, further developed, and utilized in classrooms engaging in multimodal composing practices. This dissertation pushes consideration of New Media into the work already being performed by those in Rhetoric and Composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, water was observed flowing from a section of steep slope along US-2 near St. Ignace, Michigan in addition to soil sloughing in the area where the water is flowing from the slope. An inspection of the area also showed the presence of sinkholes. The original construction drawing for US-2 also indicated that sinkholes were present in this area prior to road construction in 1948. An investigation was conducted to determine the overall stability of the slope. The slope consists primarily of aeolian sand deposits. Laboratory testing determined the shear strength of the slope material to have a friction angle around 30°, which is also the slope angle. Thus, the slope is at its maximum angle for stability—however, the slope is also heavily wooded which provides additional support to the slope. Although the area surrounding the water flow has been sloughing, the remaining slope remains intact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while achieving renewable electricity storage. Meanwhile, ORR that is often coupled in AEMFCs on the cathode was investigated on non-PGM electrocatalyst with comparable activity to commercial Pt/C. The electro-biorefinery process could be coupled with traditional biorefinery operation and will play a significant role in our energy and chemical landscape.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conventional vehicles are creating pollution problems, global warming and the extinction of high density fuels. To address these problems, automotive companies and universities are researching on hybrid electric vehicles where two different power devices are used to propel a vehicle. This research studies the development and testing of a dynamic model for Prius 2010 Hybrid Synergy Drive (HSD), a power-split device. The device was modeled and integrated with a hybrid vehicle model. To add an electric only mode for vehicle propulsion, the hybrid synergy drive was modified by adding a clutch to carrier 1. The performance of the integrated vehicle model was tested with UDDS drive cycle using rule-based control strategy. The dSPACE Hardware-In-the-Loop (HIL) simulator was used for HIL simulation test. The HIL simulation result shows that the integration of developed HSD dynamic model with a hybrid vehicle model was successful. The HSD model was able to split power and isolate engine speed from vehicle speed in hybrid mode.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of this project is to learn the necessary steps to create a finite element model, which can accurately predict the dynamic response of a Kohler Engines Heavy Duty Air Cleaner (HDAC). This air cleaner is composed of three glass reinforced plastic components and two air filters. Several uncertainties arose in the finite element (FE) model due to the HDAC’s component material properties and assembly conditions. To help understand and mitigate these uncertainties, analytical and experimental modal models were created concurrently to perform a model correlation and calibration. Over the course of the project simple and practical methods were found for future FE model creation. Similarly, an experimental method for the optimal acquisition of experimental modal data was arrived upon. After the model correlation and calibration was performed a validation experiment was used to confirm the FE models predictive capabilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A NOx reduction efficiency higher than 95% with NH3 slip less than 30 ppm is desirable for heavy-duty diesel (HDD) engines using selective catalytic reduction (SCR) systems to meet the US EPA 2010 NOx standard and the 2014-2018 fuel consumption regulation. The SCR performance needs to be improved through experimental and modeling studies. In this research, a high fidelity global kinetic 1-dimensional 2-site SCR model with mass transfer, heat transfer and global reaction mechanisms was developed for a Cu-zeolite catalyst. The model simulates the SCR performance for the engine exhaust conditions with NH3 maldistribution and aging effects, and the details are presented. SCR experimental data were collected for the model development, calibration and validation from a reactor at Oak Ridge National Laboratory (ORNL) and an engine experimental setup at Michigan Technological University (MTU) with a Cummins 2010 ISB engine. The model was calibrated separately to the reactor and engine data. The experimental setup, test procedures including a surrogate HD-FTP cycle developed for transient studies and the model calibration process are described. Differences in the model parameters were determined between the calibrations developed from the reactor and the engine data. It was determined that the SCR inlet NH3 maldistribution is one of the reasons causing the differences. The model calibrated to the engine data served as a basis for developing a reduced order SCR estimator model. The effect of the SCR inlet NO2/NOx ratio on the SCR performance was studied through simulations using the surrogate HD-FTP cycle. The cumulative outlet NOx and the overall NOx conversion efficiency of the cycle are highest with a NO2/NOx ratio of 0.5. The outlet NH3 is lowest for the NO2/NOx ratio greater than 0.6. A combined engine experimental and simulation study was performed to quantify the NH3 maldistribution at the SCR inlet and its effects on the SCR performance and kinetics. The uniformity index (UI) of the SCR inlet NH3 and NH3/NOx ratio (ANR) was determined to be below 0.8 for the production system. The UI was improved to 0.9 after installation of a swirl mixer into the SCR inlet cone. A multi-channel model was developed to simulate the maldistribution effects. The results showed that reducing the UI of the inlet ANR from 1.0 to 0.7 caused a 5-10% decrease in NOx reduction efficiency and 10-20 ppm increase in the NH3 slip. The simulations of the steady-state engine data with the multi-channel model showed that the NH3 maldistribution is a factor causing the differences in the calibrations developed from the engine and the reactor data. The Reactor experiments were performed at ORNL using a Spaci-IR technique to study the thermal aging effects. The test results showed that the thermal aging (at 800°C for 16 hours) caused a 30% reduction in the NH3 stored on the catalyst under NH3 saturation conditions and different axial concentration profiles under SCR reaction conditions. The kinetics analysis showed that the thermal aging caused a reduction in total NH3 storage capacity (94.6 compared to 138 gmol/m3), different NH3 adsorption/desorption properties and a decrease in activation energy and the pre-exponential factor for NH3 oxidation, standard and fast SCR reactions. Both reduction in the storage capability and the change in kinetics of the major reactions contributed to the change in the axial storage and concentration profiles observed from the experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis considers the impact that discursive and community practices have on women’s access to the public sphere by examining female cyclists and a cycling community in Miami, Florida via interviews and observation. In the interviews, female cyclists frequently reported fears for their safety, including concern over harassment, when riding in public space. I interviewed participants of the cycling community and observed Emerge Miami’s meetings and events, where publicly organized cycling excursions were a major component. Using the theoretical and methodological lenses of Feminist Critical Discourse Analysis and Communities of Practice, I examined the interviews to understand how participants discursively framed and contextualized gender-based harassment. I found two meta-discourse frames in operation: a normative frame (that essentially accepted the status quo) and a feminist frame (that challenged the “naturalness” of women’s harassment as just what one had to live with). The feminist frame offered a pathway for women to exert control over their experiences and alter the cultural understanding of harassment’s meaning and effect. The local community practices of Emerge Miami also challenged the normative frames that often silence women, employing explicitly invitational practices, which demonstrates how local discursive and social activity can impact and increase women’s involvement by creating a more accessible space for women to engage with their local cycling community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical impedance tomography is applied to the problem of detecting, locating, and tracking fractures in ballistics gelatin. The hardware developed is intended to be physically robust and based on off-the-shelf hardware. Fractures were created in two separate ways: by shooting a .22 caliber bullet into the gelatin and by injecting saline solution into the gelatin. The .22 caliber bullet created an air gap, which was seen as an increase in resistivity. The saline solution created a fluid filled gap, which was seen as a decrease in resistivity. A double linear array was used to take data for each of the fracture mechanisms and a two dimensional cross section was inverted from the data. The results were validated by visually inspecting the samples during the fracture event. It was found that although there were reconstruction errors present, it was possible to reconstruct a representation of the resistive cross section. Simulations were performed to better understand the reconstructed cross-sections and to demonstrate the ability of a ring array, which was not experimentally tested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Direct sampling methods are increasingly being used to solve the inverse medium scattering problem to estimate the shape of the scattering object. A simple direct method using one incident wave and multiple measurements was proposed by Ito, Jin and Zou. In this report, we performed some analytic and numerical studies of the direct sampling method. The method was found to be effective in general. However, there are a few exceptions exposed in the investigation. Analytic solutions in different situations were studied to verify the viability of the method while numerical tests were used to validate the effectiveness of the method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many types of materials at nanoscale are currently being used in everyday life. The production and use of such products based on engineered nanomaterials have raised concerns of the possible risks and hazards associated with these nanomaterials. In order to evaluate and gain a better understanding of their effects on living organisms, we have performed first-principles quantum mechanical calculations and molecular dynamics simulations. Specifically, we will investigate the interaction of nanomaterials including semiconducting quantum dots and metallic nanoparticles with various biological molecules, such as dopamine, DNA nucleobases and lipid membranes. Firstly, interactions of semiconducting CdSe/CdS quantum dots (QDs) with the dopamine and the DNA nucleobase molecules are investigated using similar quantum mechanical approach to the one used for the metallic nanoparticles. A variety of interaction sites are explored. Our results show that small-sized Cd4Se4 and Cd4S4 QDs interact strongly with the DNA nucleobase if a DNA nucleobase has the amide or hydroxyl chemical group. These results indicate that these QDs are suitable for detecting subcellular structures, as also reported by experiments. The next two chapters describe a preparation required for the simulation of nanoparticles interacting with membranes leading to accurate structure models for the membranes. We develop a method for the molecular crystalline structure prediction of 1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC), 1,2-Dimyristoyl-sn-glycero-3-phosphorylethanolamine (DMPE) and cyclic di-amino acid peptide using first-principles methods. Since an accurate determination of the structure of an organic crystal is usually an extremely difficult task due to availability of the large number of its conformers, we propose a new computational scheme by applying knowledge of symmetry, structural chemistry and chemical bonding to reduce the sampling size of the conformation space. The interaction of metal nanoparticles with cell membranes is finally carried out by molecular dynamics simulations, and the results are reported in the last chapter. A new force field is developed which accurately describes the interaction forces between the clusters representing small-sized metal nanoparticles and the lipid bilayer molecules. The permeation of nanoparticles into the cell membrane is analyzed together with the RMSD values of the membrane modeled by a lipid bilayer. The simulation results suggest that the AgNPs could cause the same amount of deformation as the AuNPs for the dysfunction of the membrane.