996 resultados para Michigan Tech
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although molecular modeling has been used extensively to predict elastic properties of materials, modeling of more complex phenomenon such as fracture has only recently been possible with the development of new force fields such as ReaxFF, which is used in this work. It is not fully understood what molecular modeling parameters such as thermostat type, thermostat coupling, time step, system size, and strain rate are required for accurate modeling of fracture. Selection of modeling parameters to model fracture can be difficult and non-intuitive compared to modeling elastic properties using traditional force fields, and the errors generated by incorrect parameters may be non-obvious. These molecular modeling parameters are systematically investigated and their effects on the fracture of well-known carbon materials are analyzed. It is determined that for coupling coefficients of 250 fs and greater do not result in substantial differences in the stress-strain response of the materials using any thermostat type. A time step of 0.5 fs of smaller is required for accurate results. Strain rates greater than 2.2 ns-1 are sufficient to obtain repeatable results with slower strain rates for the materials studied. The results of this study indicate that further refinement of the Chenoweth parameter set is required to accurately predict the mechanical response of carbon-based systems. The ReaxFF has been used extensively to model systems in which bond breaking and formation occur. In particular ReaxFF has been used to model reactions of small molecules. Some elastic and fracture properties have been successfully modeled using ReaxFF in materials such as silicon and some metals. However, it is not clear if current parameterizations for ReaxFF are able to accurately reproduce the elastic and fracture properties of carbon materials. The stress-strain response of a new ReaxFF parameterization is compared to the previous parameterization and density functional theory results for well-known carbon materials. The new ReaxFF parameterization makes xv substantial improvements to the predicted mechanical response of carbon materials, and is found to be suitable for modeling the mechanical response of carbon materials. Finally, a new material composed of carbon nanotubes within an amorphous carbon (AC) matrix is modeled using the ReaxFF. Various parameters that may be experimentally controlled are investigated such as nanotube bundling, comparing multi-walled nanotube with single-walled nanotubes, and degree of functionalization of the nanotubes. Elastic and fracture properties are investigated for the composite systems and compared to results of pure-nanotube and pure-AC models. It is found that the arrangement of the nanotubes and degree of crosslinking may substantially affect the properties of the systems, particularly in the transverse directions.
Resumo:
Neuromorphic computing has become an emerging field in wide range of applications. Its challenge lies in developing a brain-inspired architecture that can emulate human brain and can work for real time applications. In this report a flexible neural architecture is presented which consists of 128 X 128 SRAM crossbar memory and 128 spiking neurons. For Neuron, digital integrate and fire model is used. All components are designed in 45nm technology node. The core can be configured for certain Neuron parameters, Axon types and synapses states and are fully digitally implemented. Learning for this architecture is done offline. To train this circuit a well-known algorithm Restricted Boltzmann Machine (RBM) is used and linear classifiers are trained at the output of RBM. Finally, circuit was tested for handwritten digit recognition application. Future prospects for this architecture are also discussed.
Resumo:
An invisibility cloak is a device that can hide the target by enclosing it from the incident radiation. This intriguing device has attracted a lot of attention since it was first implemented at a microwave frequency in 2006. However, the problems of existing cloak designs prevent them from being widely applied in practice. In this dissertation, we try to remove or alleviate the three constraints for practical applications imposed by loosy cloaking media, high implementation complexity, and small size of hidden objects compared to the incident wavelength. To facilitate cloaking design and experimental characterization, several devices and relevant techniques for measuring the complex permittivity of dielectric materials at microwave frequencies are developed. In particular, a unique parallel plate waveguide chamber has been set up to automatically map the electromagnetic (EM) field distribution for wave propagation through the resonator arrays and cloaking structures. The total scattering cross section of the cloaking structures was derived based on the measured scattering field by using this apparatus. To overcome the adverse effects of lossy cloaking media, microwave cloaks composed of identical dielectric resonators made of low loss ceramic materials are designed and implemented. The effective permeability dispersion was provided by tailoring dielectric resonator filling fractions. The cloak performances had been verified by full-wave simulation of true multi-resonator structures and experimental measurements of the fabricated prototypes. With the aim to reduce the implementation complexity caused by metamaterials employment for cloaking, we proposed to design 2-D cylindrical cloaks and 3-D spherical cloaks by using multi-layer ordinary dielectric material (εr>1) coating. Genetic algorithm was employed to optimize the dielectric profiles of the cloaking shells to provide the minimum scattering cross sections of the cloaked targets. The designed cloaks can be easily scaled to various operating frequencies. The simulation results show that the multi-layer cylindrical cloak essentially outperforms the similarly sized metamaterials-based cloak designed by using the transformation optics-based reduced parameters. For the designed spherical cloak, the simulated scattering pattern shows that the total scattering cross section is greatly reduced. In addition, the scattering in specific directions could be significantly reduced. It is shown that the cloaking efficiency for larger targets could be improved by employing lossy materials in the shell. At last, we propose to hide a target inside a waveguide structure filled with only epsilon near zero materials, which are easy to implement in practice. The cloaking efficiency of this method, which was found to increase for large targets, has been confirmed both theoretically and by simulations.
Resumo:
Recent changes in the cost and availability of natural gas (NG) as compared to diesel have sparked interest at all levels of the commercial shipping sector. In particular, Class 1 heavy-duty rail has been researching NG as a supplement to diesel combustion. This study investigates the relative economic and emissions advantage of making use of the energy efficiencies if combustion is circumvented altogether by use of fuel cell (FC) technologies applied to NG. FC technology for the transport sector has primarily been developed for the private automobile. However, FC use in the automobile sector faces considerable economic and logistical barriers such as cost, range, durability, and refueling infrastructure. The heavy-duty freight sector may be a more reasonable setting to introduce FC technology to the transportation market. The industry has shown interest in adopting NG as a potential fuel by already investing in NG infrastructure and locomotives. The two most promising FC technologies are proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). SOFCs are more efficient and capable of accepting any kind of fuel, which makes them particularly attractive. The rail industry can benefit from the adoption of FC technology through reduced costs and emissions, as well as limiting dependence on diesel, which accounts for a large portion of operation expenses for Class 1 railroads. This report provides an economic feasibility analysis comparing the use of PEMFCs and SOFCs in heavy freight rail transport applications. The scope is to provide insight into which technologies could be pursued by the industry and to prioritize technologies that need further development. Initial results do not show economic potential for NG and fuel cells in locomotion, but some minimal potential for reduced emissions is seen. Various technology configurations and market scenarios analyzed could provide savings if the price of LNG is decreased and the price of diesel increases. The most beneficial areas of needed research include technology development for the variable output of SOFCs, and hot start-up optimization.
Resumo:
This study will look at the passenger air bag (PAB) performance in a fix vehicle environment using Partial Low Risk Deployment (PLRD) as a strategy. This development will follow test methods against actual baseline vehicle data and Federal Motor Vehicle Safety Standards 208 (FMVSS 208). FMVSS 208 states that PAB compliance in vehicle crash testing can be met using one of three deployment methods. The primary method suppresses PAB deployment, with the use of a seat weight sensor or occupant classification sensor (OCS), for three-year old and six-year old occupants including the presence of a child seat. A second method, PLRD allows deployment on all size occupants suppressing only for the presents of a child seat. A third method is Low Risk Deployment (LRD) which allows PAB deployment in all conditions, all statures including any/all child seats. This study outlines a PLRD development solution for achieving FMVSS 208 performance. The results of this study should provide an option for system implementation including opportunities for system efficiency and other considerations. The objective is to achieve performance levels similar too or incrementally better than the baseline vehicles National Crash Assessment Program (NCAP) Star rating. In addition, to define systemic flexibility where restraint features can be added or removed while improving occupant performance consistency to the baseline. A certified vehicles’ air bag system will typically remain in production until the vehicle platform is redesigned. The strategy to enable the PLRD hypothesis will be to first match the baseline out of position occupant performance (OOP) for the three and six-year old requirements. Second, improve the 35mph belted 5th percentile female NCAP star rating over the baseline vehicle. Third establish an equivalent FMVSS 208 certification for the 25mph unbelted 50th percentile male. FMVSS 208 high-speed requirement defines the federal minimum crash performance required for meeting frontal vehicle crash-test compliance. The intent of NCAP 5-Star rating is to provide the consumer with information about crash protection, beyond what is required by federal law. In this study, two vehicles segments were used for testing to compare and contrast to their baseline vehicles performance. Case Study 1 (CS1) used a cross over vehicle platform and Case Study 2 (CS2) used a small vehicle segment platform as their baselines. In each case study, the restraints systems were from different restraint supplier manufactures and each case contained that suppliers approach to PLRD. CS1 incorporated a downsized twins shaped bag, a carryover inflator, standard vents, and a strategic positioned bag diffuser to help disperse the flow of gas to improve OOP. The twin shaped bag with two segregated sections (lobes) to enabled high-speed baseline performance correlation on the HYGE Sled. CS2 used an A-Symmetric (square shape) PAB with standard size vents, including a passive vent, to obtain OOP similar to the baseline. The A-Symmetric shape bag also helped to enabled high-speed baseline performance improvements in HYGE Sled testing in CS2. The anticipated CS1 baseline vehicle-pulse-index (VPI) target was in the range of 65-67. However, actual dynamic vehicle (barrier) testing was overshadowed with the highest crash pulse from the previous tested vehicles with a VPI of 71. The result from the 35mph NCAP Barrier test was a solid 4-Star (4.7 Star) respectfully. In CS2, the vehicle HYGE Sled development VPI range, from the baseline was 61-62 respectively. Actual NCAP test produced a chest deflection result of 26mm versus the anticipated baseline target of 12mm. The initial assessment of this condition was thought to be due to the vehicles significant VPI increase to 67. A subsequent root cause investigation confirmed a data integrity issue due to the instrumentation. In an effort to establish a true vehicle test data point a second NCAP test was performed but faced similar instrumentation issues. As a result, the chest deflect hit the target of 12.1mm; however a femur load spike, similar to the baseline, now skewed the results. With noted level of performance improvement in chest deflection, the NCAP star was assessed as directional for 5-Star capable performance. With an actual rating of 3-Star due to instrumentation, using data extrapolation raised the ratings to 5-Star. In both cases, no structural changes were made to the surrogate vehicle and the results in each case matched their perspective baseline vehicle platforms. These results proved the PLRD is viable for further development and production implementation.
Resumo:
The combustion strategy in a diesel engine has an impact on the emissions, fuel consumption and the exhaust temperatures. The PM mass retained in the CPF is a function of NO2 and PM concentrations in addition to the exhaust temperatures and the flow rates. Thus the engine combustion strategy affects exhaust characteristics which has an impact on the CPF operation and PM mass retained and oxidized. In this report, a process has been developed to simulate the relationship between engine calibration, performance and HC and PM oxidation in the DOC and CPF respectively. Fuel Rail Pressure (FRP) and Start of Injection (SOI) sweeps were carried out at five steady state engine operating conditions. This data, along with data from a previously carried out surrogate HD-FTP cycle [1], was used to create a transfer function model which estimates the engine out emissions, flow rates, temperatures for varied FRP and SOI over a transient cycle. Four different calibrations (test cases) were considered in this study, which were simulated through the transfer function model and the DOC model [1, 2]. The DOC outputs were then input into a model which simulates the NO2 assisted and thermal PM oxidation inside a CPF. Finally, results were analyzed as to how engine calibration impacts the engine fuel consumption, HC oxidation in the DOC and the PM oxidation in the CPF. Also, active regeneration for various test cases was simulated and a comparative analysis of the fuel penalties involved was carried out.
Resumo:
Finite numbers of ions are present in microfluidic devices. This leads to ion limiting effects in microfluidic channels and electrode surfaces. These effects include electrode surface changes and ion concentration gradient formation across microfluidic channels, and can influence microfluidic device behavior. A literature survey on the use of electrochemical analysis techniques in micro- and nanofluidic devices was carried out, which puts into perspective the importance of electrode surface changes with regards to analytical microfluidic applications. Surface changes in Pt wire electrodes under various physiological buffer and electric field conditions were investigated using cyclic voltammetry (CV), SEM-EDS and XPS. Effects of surface changes on electrochemical analysis performance of Pt wire and thin film electrodes were investigated. Electrode surfaces were subjected to varying phosphate buffer and electric field conditions, and their CV performance was monitored. Electrode surfaces were also studied with SEM-EDS. Two studies of ion concentration gradient formation in microfluidic channels were conducted. In the first, concentration gradients of H+ and OH- ions generated on electrode surfaces were found to cause significant pH decreases in certain buffer and electric field conditions, which was also found to play a key role in iDEP manipulation of proteins. The role of electrode surface reactions in this case shows the importance of understanding electrode surface changes in microfluidic devices. In the second study of ion concentration gradient formation, Cl- ion concentration gradient formation was attempted to be quantified upon electric field application across a KCl solution. Electrokinetic transport of the Cl- indicating fluorophore MQAE contributed significantly to the fluorescence microscopy signals collected, complicating Cl- quantification as a function of position and time. It was shown that a dielectric coating on electrode surfaces is effective at preventing MQAE electrokinetic transport.
Resumo:
Through the use of rhetoric centered on authority and risk avoidance, scientific method has co-opted knowledge, especially women's everyday and experiential knowledge in the domestic sphere. This, in turn, has produced a profound affect on technical communication in the present day. I am drawing on rhetorical theory to study cookbooks and recipes for their contributions to changes in instructional texts. Using the rhetorical lenses of metis (cunning intelligence), kairos (timing and fitness) and mneme (memory), I examine the way in which recipes and cookbooks are constructed, used and perceived. This helps me uncover lost voices in history, the voices of women who used recipes, produced cookbooks and changed the way instructions read. Beginning with the earliest cookbooks and recipes, but focusing on the pivotal temporal interval of 1870-1935, I investigate the writing and rhetorical forces shaping instruction sets and domestic discourse. By the time of scientific cooking and domestic science, everyday and experiential knowledge were being excluded to make room for scientific method and the industrial values of the public sphere. In this study, I also assess how the public sphere, via Cooperative Extension Services and other government agencies, impacted the domestic sphere, further devaluing everyday knowledge in favor of the public scientific model. I will show how the changes in the production of food, cookbooks and recipes were related to changes in technical communication. These changes had wide rippling effects on the field of technical communication. By returning to some of the tenets and traditions of everyday and experiential knowledge, technical communication scholars, practitioners and instructors today can find new ways to encounter technical communication, specifically regarding the creation of instructional texts. Bringing cookbooks, recipes and everyday knowledge into the classroom and the field engenders a new realm of epistemological possibilities.
Resumo:
Through comparative analysis of the immigrant labor forces at work in iron mining in northern Minnesota, coal mining in Illinois, and steel milling in the Calumet region of Chicago and Gary, this paper addresses the forms of social distance separating and marginalizing new immigrants from American society and trade unionism that existed in 1914, the year that marked the end point of mass immigration from Eastern and Southern Europe. The “new immigration” was a labor migration that congregated its subjects overwhelmingly in what were called "unskilled" or "semi-skilled" forms of labor. Skilled work was largely, with certain variations, the preserve of "American" or old immigrant workers. This labor gulf separating new immigrants and American workers was hardened by a spatial separateness. New immigrants often lived in what have been called industrial villages—the mining town or location, the factory neighborhood— striking in their isolation and insularity from mainstream society. This separateness and insularity became a major preoccupation for corporate managers, Progressive reformers, and for American trade unions as new immigrants began to engage in major labor struggles leading up to 1914. But among the three industries, only the union of coal miners, the United Mine Workers, enjoyed success in organizing the new immigrants. In the steel mills and the iron mines, the unions were either rooted out or failed to gain a foothold at all. The explanation for these differences is to be found in the different forms of industrial development among the industries studied.
Resumo:
The paper will examine the role Teofilo Petriella played in splitting Italian communities through Marxist agitation. As a strike leader on Mesabi Iron Range and in Copper Country, Petriella traveled throughout the Great Lakes region. In each community he found supporters among the discontented miners, while also facing strong opposition from Catholic priests and middle class community leaders. By examining his activities in both regions, I will illustrate the connectivity of Italian communities around Lake Superior, while also addressing religious and class conflict amongst the populations.
Resumo:
Finnish immigrants are often seen as labor activists, even “radicals,” and key players in the “left-right” political divide, thus indicating a real presence on the “other” side of the economy. How did successive historians build these now-standard views? This paper takes a sweeping tour of writing on Finnish Canadian workers, tracing the evolution of these assessments. Archives and histories provided basic notions of “the” Finnish Canadian and were key sources as professional scholars – many Finns themselves – began their work. In Canada, new academics – Varpu Lindstrom most prominently – wrote about women, arts and culture, intellectual activity, and the impact of Finns as “exceptional” historical actors in socioeconomic terms. But, have historians of Finnish Canadian workers built a convincing case? Examination of Finnish Canadian “economic” historiography offers insights into the Finnish Canadian “story,” and the nature of generalization in immigrant and ethnic history.
Resumo:
In the Iron Range Strike of 1916, working-class wives picketed alongside their husbands in a conflict-ridden and dangerous setting. Mine deputies abused immigrant women on the picket lines and in their homes, with several disquieting reports receiving statewide attention in Minnesota. Many middle-class reformers in the Twin Cities grew sympathetic to the plight of northern mining families and became controversially involved the labor struggle. Some middleclass women worked alongside working-class wives and radical organizers from the Industrial Workers of the World (IWW). At the center of this gendered analysis is the cross-class cooperation between an upper-middle class woman, Lenora Austin Hamlin, a radical reformer, Elizabeth Gurley Flynn, and the story of a working-class housewife, Mikla Masonovich. This study will ask how authentic, prevalent, and unproblematic their stories of cross-class cohesive action actually were. In answering this, it will address and identify those factors that impeded women’s potential for unity. “Flash in the Pan” argues that as a result of both real and perceived differences, these networks of women remained isolated, inhibiting each from gaining sufficient power to work cohesively, and marginalizing their influence. Drawing upon a variety of sources, including media representations in newspapers, and archives of social, labor and women’s organizations, this regional study lends state-level insight into the larger gender-labor historiography.
Resumo:
While the 1913-1914 copper country miners’ strike undoubtedly plays an important role in the identity of the Keweenaw Peninsula, it is worth noting that the model of mining corporations employing large numbers of laborers was not a foregone conclusion in the history of American mining. Between 1807 and 1847, public mineral lands in Missouri, in the Upper Mississippi Valley, and along the southern shore of Lake Superior were reserved from sale and subject to administration by the nation’s executive branch. By decree of the federal government, miners in these regions were lessees, not landowners. Yet, in the Wisconsin lead region especially, federal authorities reserved for independent “diggers” the right to prospect virtually unencumbered. In doing so, they preserved a comparatively egalitarian system in which the ability to operate was determined as much by luck as by financial resources. A series of revolts against federal authority in the early nineteenth century gradually encouraged officers in Washington to build a system in the copper country in which only wealthy investors could marshal the resources to both obtain permits and actually commence mining operations. This paper will therefore explore the role of the federal government in establishing a leasing system for public mineral lands in the years previous to the California Gold Rush, highlighting the development of corporate mining which ultimately set a stage for the wave of miners’ strikes in the late nineteenth and early twentieth centuries.
Resumo:
During the second half of the nineteenth century fraternal and benevolent associations of numerous descriptions grew and prospered in mining communities everywhere. They played an important, but neglected role, in assisting transatlantic migration and movement between mining districts as well as building social capital within emerging mining communities. They helped to build bridges between different ethnic communities, provided conduits between labour and management, and networked miners into the non-mining community. Their influence spread beyond the adult males that made up most of their membership to their wives and families and provided levels of social and economic support otherwise unobtainable at that time. Of course, the influence of these organisations could also be divisive where certain groups or religions were excluded and they may have worked to exacerbate, as much as ameliorate, the problems of community development. This paper will examine some of these issues by looking particularly at the role of Freemasonry and Oddfellowry in Cornwall, Calumet, and Nevada City between 1860 and 1900. Work on fraternity in the Keweenaw was undertaken in Houghton some years ago with a grant from the Copper Country Archive and has since been continued by privately funded research in California and other Western mining states. Some British aspects of this research can be found in my article on mining industrial relations in Labour History Review April 2006