996 resultados para Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drawing on theories of technical communication, rhetoric, literacy, language and culture, and medical anthropology, this dissertation explores how local culture and traditions can be incorporated into health-risk-communication-program design and implementation, including the design and dissemination of health-risk messages. In a modern world with increasing global economic partnerships, mounting health and environmental risks, and cross-cultural collaborations, those who interact with people of different cultures have “a moral obligation to take those cultures seriously, including their social organization and values” (Hahn and Inhorn 10). Paradoxically, at the same time as we must carefully adapt health, safety, and environmental-risk messages to diverse cultures and populations, we must also recognize the increasing extent to which we are all becoming part of one, vast, interrelated global village. This, too, has a significant impact on the ways in which healthcare plans should be designed, communicated, and implemented. Because communicating across diverse cultures requires a system for “bridging the gap between individual differences and negotiating individual realities” (Kim and Gudykunst 50), both administrators and beneficiaries of malaria-treatment-and-control programs (MTCPs) in Liberia were targeted to participate in this study. A total of 105 people participated in this study: 21 MTCP administrators (including designers and implementers) completed survey questionnaires on program design, implementation, and outcomes; and 84 MTCP beneficiaries (e.g., traditional leaders and young adults) were interviewed about their knowledge of malaria and methods for communicating health risks in their tribe or culture. All participants showed a tremendous sense of courage, commitment, resilience, and pragmatism, especially in light of the fact that many of them live and work under dire socioeconomic conditions (e.g., no electricity and poor communication networks). Although many MTCP beneficiaries interviewed for this study had bed nets in their homes, a majority (46.34 percent) used a combination of traditional herbal medicine and Western medicine to treat malaria. MTCP administrators who participated in this study rated the impacts of their programs on reducing malaria in Liberia as moderately successful (61.90 percent) or greatly successful (38.10 percent), and they offered a variety of insights on what they might do differently in the future to incorporate local culture and traditions into program design and implementation. Participating MTCP administrators and beneficiaries differed in their understanding of what “cultural incorporation” meant, but they agreed that using local indigenous languages to communicate health-risk messages was essential for effective health-risk communication. They also suggested that understanding the literacy practices and linguistic cultures of the local people is essential to communicating health risks across diverse cultures and populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

More than 1 billion people lack access to clean water and proper sanitation. As part of efforts to solve this problem, there is a growing shift from public to private water management led by The World Bank and the International Monetary Fund (IMF). This shift has inspired much related research. Researchers have assessed water privatization related perceptions of consumers, government officials, and multinational company agents. This thesis presents results of a study of nongovernmental (NGO) staff perceptions of water privatization. Although NGOs are important actors in sustainable water related development through water provision, we have little understanding of their perceptions of water privatization and how it impacts their activities. My goal was to fill this gap. I sampled international and national development NGOs with water, sanitation, and hygiene (WASH) foci. I conducted 28 interviews between January and June of 2011 with staff in key positions including water policy analysts, program officers, and project coordinators. Their perceptions of water privatization were mixed. I also found that local water privatization in most cases does not influence NGO decisions to conduct projects in a region. I found that development NGO staff base their beliefs about water privatization on a mix of personal experience and media coverage. My findings have important implications for the WASH sector as we work to solve the worsening global water access crisis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The report reviews the technology of Free-space Optical Communication (FSO) and simulation methods for testing the performance of diverged beam in the technology. In addition to the introduction, the theory of turbulence and its effect over laser is also reviewed. In the simulation revision chapter, on-off keying (OOK) and diverged beam is assumed in the transmitter, and in the receiver, avalanche photodiode (APD) is utilized to convert the photon stream into electron stream. Phase screens are adopted to simulate the effect of turbulence over the phase of the optical beam. Apart from this, the method of data processing is introduced and retrospected. In the summary chapter, there is a general explanation of different beam divergence and their performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reported research project involved studying how teaching science using demonstrations, inquiry-based cooperative learning groups, or a combination of the two methods affected sixth grade students’ understanding of air pressure and density. Three different groups of students were each taught the two units using different teaching methods. Group one learned about the topics through both demonstrations and inquirybased cooperative learning, whereas group two only viewed demonstrations, and group three only participated in inquiry-based learning in cooperative learning groups. The study was designed to answer the following two questions: 1. Which teaching strategy works best for supporting student understanding of air pressure and density: demonstrations, inquirybased labs in cooperative learning groups, or a combination of the two? 2. And what effect does the time spent engaging in a particular learning experience (demonstrations or labs) have on student learning? Overall, the data did not provide sufficient evidence that one method of learning was more effective than the others. The results also suggested that spending more time on a unit does not necessarily equate to a better understanding of the concepts by the students. Implications for science instruction are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intraneural Ganglion Cyst is a 200 year old mystery related to nerve injury which is yet to be solved. Current treatments for the above problem are relatively simple procedures related to removal of cystic contents from the nerve. However, these treatments may result into neuropathic pain and recurrence of the cyst. The articular theory proposed by Spinner et al., (Spinner et al. 2003) takes into consideration the neurological deficit in Common Peroneal Nerve (CPN) branch of the sciatic nerve and affirms that in addition to the above treatments, ligation of articular branch results into foolproof eradication of the deficit. Mechanical Modeling of the Affected Nerve Cross Section will reinforce the articular theory (Spinner et al. 2003). As the cyst propagates, it compresses the neighboring fascicles and the nerve cross section appears like a signet ring. Hence, in order to mechanically model the affected nerve cross section; computational methods capable of modeling excessively large deformations are required. Traditional FEM produces distorted elements while modeling such deformations, resulting into inaccuracies and premature termination of the analysis. The methods described in this Master’s Thesis are effective enough to be able to simulate such deformations. The results obtained from the model adequately resemble the MRI image obtained at the same location and shows an appearance of a signet ring. This Master’s Thesis describes the neurological deficit in brief followed by detail explanation of the advanced computational methods used to simulate this problem. Finally, qualitative results show the resemblance of mechanical model to MRI images of the Nerve Cross Section at the same location validating the capability of these methods to study this neurological deficit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An extrusion die is used to continuously produce parts with a constant cross section; such as sheets, pipes, tire components and more complex shapes such as window seals. The die is fed by a screw extruder when polymers are used. The extruder melts, mixes and pressures the material by the rotation of either a single or double screw. The polymer can then be continuously forced through the die producing a long part in the shape of the die outlet. The extruded section is then cut to the desired length. Generally, the primary target of a well designed die is to produce a uniform outlet velocity without excessively raising the pressure required to extrude the polymer through the die. Other properties such as temperature uniformity and residence time are also important but are not directly considered in this work. Designing dies for optimal outlet velocity variation using simple analytical equations are feasible for basic die geometries or simple channels. Due to the complexity of die geometry and of polymer material properties design of complex dies by analytical methods is difficult. For complex dies iterative methods must be used to optimize dies. An automated iterative method is desired for die optimization. To automate the design and optimization of an extrusion die two issues must be dealt with. The first is how to generate a new mesh for each iteration. In this work, this is approached by modifying a Parasolid file that describes a CAD part. This file is then used in a commercial meshing software. Skewing the initial mesh to produce a new geometry was also employed as a second option. The second issue is an optimization problem with the presence of noise stemming from variations in the mesh and cumulative truncation errors. In this work a simplex method and a modified trust region method were employed for automated optimization of die geometries. For the trust region a discreet derivative and a BFGS Hessian approximation were used. To deal with the noise in the function the trust region method was modified to automatically adjust the discreet derivative step size and the trust region based on changes in noise and function contour. Generally uniformity of velocity at exit of the extrusion die can be improved by increasing resistance across the die but this is limited by the pressure capabilities of the extruder. In optimization, a penalty factor that increases exponentially from the pressure limit is applied. This penalty can be applied in two different ways; the first only to the designs which exceed the pressure limit, the second to both designs above and below the pressure limit. Both of these methods were tested and compared in this work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report details the outcomes of a study designed to investigate the piezoelectric properties of Portland cement paste for its possible applications in structural health monitoring. Specifically, this study provides insights into the effects on piezoelectric properties of hardened cement paste from the application of an electric field during the curing process. As part of the reporting of this study, the state of the art in structural health monitoring is reviewed. In this study it is demonstrated that application of an electric field using a spatially-coarse array of electrodes to cure cement paste was not effective in increasing the magnitude of the piezoelectric coupling, but did increase repeatability of the piezoelectric response of the hardened material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The U.S. natural gas industry has changed because of the recent ability to produce natural gas from unconventional shale deposits. One of the largest and most important deposits is the Marcellus Shale. Hydraulic fracturing and horizontal drilling have allowed for the technical feasibility of production, but concerns exist regarding the economics of shale gas production. These concerns are related to limited production and economic data for shale gas wells, declines in the rates of production, falling natural gas prices, oversupply issues coupled with slow growth in U.S. natural gas demand, and rising production costs. An attempt to determine profitability was done through the economic analysis of an average shale gas well using data that is representative of natural gas production from 2009 to 2011 in the Marcellus Shale. Despite the adverse conditions facing the shale gas industry it is concluded from the results of this analysis that a shale gas well in the Marcellus Shale is profitable based on NPV, IRR and breakeven price calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prediction of radiated fields from transmission lines has not previously been studied from a panoptical power system perspective. The application of BPL technologies to overhead transmission lines would benefit greatly from an ability to simulate real power system environments, not limited to the transmission lines themselves. Presently circuitbased transmission line models used by EMTP-type programs utilize Carson’s formula for a waveguide parallel to an interface. This formula is not valid for calculations at high frequencies, considering effects of earth return currents. This thesis explains the challenges of developing such improved models, explores an approach to combining circuit-based and electromagnetics modeling to predict radiated fields from transmission lines, exposes inadequacies of simulation tools, and suggests methods of extending the validity of transmission line models into very high frequency ranges. Electromagnetics programs are commonly used to study radiated fields from transmission lines. However, an approach is proposed here which is also able to incorporate the components of a power system through the combined use of EMTP-type models. Carson’s formulas address the series impedance of electrical conductors above and parallel to the earth. These equations have been analyzed to show their inherent assumptions and what the implications are. Additionally, the lack of validity into higher frequencies has been demonstrated, showing the need to replace Carson’s formulas for these types of studies. This body of work leads to several conclusions about the relatively new study of BPL. Foremost, there is a gap in modeling capabilities which has been bridged through integration of circuit-based and electromagnetics modeling, allowing more realistic prediction of BPL performance and radiated fields. The proposed approach is limited in its scope of validity due to the formulas used by EMTP-type software. To extend the range of validity, a new set of equations must be identified and implemented in the approach. Several potential methods of implementation have been explored. Though an appropriate set of equations has not yet been identified, further research in this area will benefit from a clear depiction of the next important steps and how they can be accomplished. Prediction of radiated fields from transmission lines has not previously been studied from a panoptical power system perspective. The application of BPL technologies to overhead transmission lines would benefit greatly from an ability to simulate real power system environments, not limited to the transmission lines themselves. Presently circuitbased transmission line models used by EMTP-type programs utilize Carson’s formula for a waveguide parallel to an interface. This formula is not valid for calculations at high frequencies, considering effects of earth return currents. This thesis explains the challenges of developing such improved models, explores an approach to combining circuit-based and electromagnetics modeling to predict radiated fields from transmission lines, exposes inadequacies of simulation tools, and suggests methods of extending the validity of transmission line models into very high frequency ranges. Electromagnetics programs are commonly used to study radiated fields from transmission lines. However, an approach is proposed here which is also able to incorporate the components of a power system through the combined use of EMTP-type models. Carson’s formulas address the series impedance of electrical conductors above and parallel to the earth. These equations have been analyzed to show their inherent assumptions and what the implications are. Additionally, the lack of validity into higher frequencies has been demonstrated, showing the need to replace Carson’s formulas for these types of studies. This body of work leads to several conclusions about the relatively new study of BPL. Foremost, there is a gap in modeling capabilities which has been bridged through integration of circuit-based and electromagnetics modeling, allowing more realistic prediction of BPL performance and radiated fields. The proposed approach is limited in its scope of validity due to the formulas used by EMTP-type software. To extend the range of validity, a new set of equations must be identified and implemented in the approach. Several potential methods of implementation have been explored. Though an appropriate set of equations has not yet been identified, further research in this area will benefit from a clear depiction of the next important steps and how they can be accomplished.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the canopy cover of an urban environment leads to better estimates of carbon storage and more informed management decisions by urban foresters. The most commonly used method for assessing urban forest cover type extent is ground surveys, which can be both timeconsuming and expensive. The analysis of aerial photos is an alternative method that is faster, cheaper, and can cover a larger number of sites, but may be less accurate. The objectives of this paper were (1) to compare three methods of cover type assessment for Los Angeles, CA: handdelineation of aerial photos in ArcMap, supervised classification of aerial photos in ERDAS Imagine, and ground-collected data using the Urban Forest Effects (UFORE) model protocol; (2) to determine how well remote sensing methods estimate carbon storage as predicted by the UFORE model; and (3) to explore the influence of tree diameter and tree density on carbon storage estimates. Four major cover types (bare ground, fine vegetation, coarse vegetation, and impervious surfaces) were determined from 348 plots (0.039 ha each) randomly stratified according to land-use. Hand-delineation was better than supervised classification at predicting ground-based measurements of cover type and UFORE model-predicted carbon storage. Most error in supervised classification resulted from shadow, which was interpreted as unknown cover type. Neither tree diameter or tree density per plot significantly affected the relationship between carbon storage and canopy cover. The efficiency of remote sensing rather than in situ data collection allows urban forest managers the ability to quickly assess a city and plan accordingly while also preserving their often-limited budget.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of climate change are expected to be very severe in arid regions. The Sonora River Basin, in the northwestern state of Sonora, Mexico, is likely to be severely affected. Some of the anticipated effects include precipitation variability, intense storm events, higher overall temperatures, and less available water. In addition, population in Sonora, specifically the capital city of Hermosillo, is increasing at a 1.5% rate and current populations are near 700,000. With the reduction in water availability and an increase in population, Sonora, Mexico is expected to experience severe water resource issues in the near future. In anticipation of these changes, research is being conducted in an attempt to improve water management in the Sonora River Basin, located in the northwestern part of Sonora. This research involves participatory modeling techniques designed to increase water manager awareness of hydrological models and their use as integrative tools for water resource management. This study was conducted as preliminary research for the participatory modeling grant in order to gather useful information on the population being studied. This thesis presents research from thirty-four in-depth interviews with water managers, citizens, and agricultural producers in Sonora, Mexico. Data was collected on perceptions of water quantity and quality in the basin, thoughts on current water management practices, perceptions of climate change and its management, experience with, knowledge of, and trust in hydrological models as water management tools. Results showed that the majority of interviewees thought there was not enough water to satisfy their daily needs. Most respondents also agreed that the water available was of good quality, but that current management of water resources was ineffective. Nearly all interviewees were aware of climate change and thought it to be anthropogenic. May reported experiencing higher temperatures, precipitation changes, and higher water scarcity and attributed those fluctuations to climate change. 65% of interviewees were at least somewhat familiar with hydrological models, though only 28% had ever used them or their output. Even with model usage results being low, 100% of respondents believed hydrological models to be very useful water management tools. Understanding how water, climate change, and hydrological models are perceived by this population of people is essential to improving their water management practices in the face of climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to their relatively high calcium oxide content, industrial mineral oxide wastes are potential candidates for mineral sequestration of carbon dioxide (CO2). Cement kiln dust (CKD), a byproduct of cement manufacturing contains 20-60% CaO making it a possible candidate for CO2 sequestration. In this study, three types of CKD are characterized, before and after carbonation, using environmental scanning electron microscopy and energy dispersive x-ray microanalysis to determine the mineralogical and morphological changes occurring due to carbonation. The reactants, products, and precipitation mechanisms were investigated to enhance understanding of the governing processes and allow better utilization of CKD for CO2 sequestration. The results of multiple independent analyses confirmed the formation of CaCO3 during carbonation. Examinations of the reaction pathways found that CaO and calcium hydroxide (Ca(OH)2) were the major reactants. Three types of CaCO3 precipitation mechanisms were observed: (1) diffusion of CO2 into Ca(OH)2 particles causing precipitation in the pores of the particle and the growth of a CaCO3 ring from the outside inward, (2) precipitation onto existing particles, and (3) precipitation from aqueous solution. The growth of a CaCO3 ring on the outside of a particle may slow further diffusion of CO2 into a particle slowing iv the overall sequestration rate. Additionally, changes caused by carbonation in the solubility of trace metals were studied by mixing pre- and post-carbonated CKD with water and analyzing the solution using inductively coupled plasma mass spectrometry. Decreases in the leaching of chromium, lead, and copper were observed, and is an incentive for use of CKD for CO2 sequestration. Equilibrium modeling using PHREEQC confirmed that CaO and Ca(OH)2 would carbonate readily and form CaCO3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Squeeze film damping effects naturally occur if structures are subjected to loading situations such that a very thin film of fluid is trapped within structural joints, interfaces, etc. An accurate estimate of squeeze film effects is important to predict the performance of dynamic structures. Starting from linear Reynolds equation which governs the fluid behavior coupled with structure domain which is modeled by Kirchhoff plate equation, the effects of nondimensional parameters on the damped natural frequencies are presented using boundary characteristic orthogonal functions. For this purpose, the nondimensional coupled partial differential equations are obtained using Rayleigh-Ritz method and the weak formulation, are solved using polynomial and sinusoidal boundary characteristic orthogonal functions for structure and fluid domain respectively. In order to implement present approach to the complex geometries, a two dimensional isoparametric coupled finite element is developed based on Reissner-Mindlin plate theory and linearized Reynolds equation. The coupling between fluid and structure is handled by considering the pressure forces and structural surface velocities on the boundaries. The effects of the driving parameters on the frequency response functions are investigated. As the next logical step, an analytical method for solution of squeeze film damping based upon Green’s function to the nonlinear Reynolds equation considering elastic plate is studied. This allows calculating modal damping and stiffness force rapidly for various boundary conditions. The nonlinear Reynolds equation is divided into multiple linear non-homogeneous Helmholtz equations, which then can be solvable using the presented approach. Approximate mode shapes of a rectangular elastic plate are used, enabling calculation of damping ratio and frequency shift as well as complex resistant pressure. Moreover, the theoretical results are correlated and compared with experimental results both in the literature and in-house experimental procedures including comparison against viscoelastic dampers.