995 resultados para Michigan Tech Lode
Resumo:
Organic amendments are commonly used to improve tree nursery soil conditions for increased seedling growth. However, few studies compare organic amendments effects on soil conditions, and fewer compare subsequent effects on seedling growth. The effects of three organic amendments on soil properties and seedling growth were investigated at the USDA Forest Service J.W. Toumey Nursery in Watersmeet, MI. Pine sawdust (red pine, Pinus resinosa), hardwood sawdust (maple, Acer spp. and aspen, Populus spp.), and peat were individually incorporated into a loamy sand nursery soil in August, 2006, and soil properties were sampled periodically for the next 14 months. Jack (Pinus banksiana), red, and white pine (Pinus strobus) were sown into test plots in June, 2007 and sampled for growth responses at the end of the growing season. It is hypothesized; pine sawdust and peat can be used as a satisfactory soil amendment to improve soil conditions and produce high quality seedlings, when compared to hardwood sawdust in bareroot nursery soils. This study has the potential to reduce nursery costs while broadening soil amendment options. The addition of peat and pine sawdust increased soil organic matter above control soil conditions after 14 months. However, hardwood sawdust-amended soils did not differ from control soils after same time period. High N concentrations in peat increased total soil N over the other treatments. Similarly, the addition of peat increased soil matric potential and available water over all other treatments. Seedlings grew tallest with the largest stem diameter, and had the largest biomass in both control soil and soil amended with peat, compared to either sawdust treatment. Seedlings grown in peat-amended soils had higher N concentrations than those grown in soils treated with pine sawdust, though neither was different from seedlings grown in control or hardwood sawdust-amended soils. Overall, peat is a well suited organic soil amendment for the enhancement of soil properties, but no amendments were able to increase one-year seedling growth over control soils.
Resumo:
This dissertation presents an effective quasi one-dimensional (1-D) computational simulation tool and a full two-dimensional (2-D) computational simulation methodology for steady annular/stratified internal condensing flows of pure vapor. These simulation tools are used to investigate internal condensing flows in both gravity as well as shear driven environments. Through accurate numerical simulations of the full two dimensional governing equations, results for laminar/laminar condensing flows inside mm-scale ducts are presented. The methodology has been developed using MATLAB/COMSOL platform and is currently capable of simulating film-wise condensation for steady (and unsteady flows). Moreover, a novel 1-D solution technique, capable of simulating condensing flows inside rectangular and circular ducts with different thermal boundary conditions is also presented. The results obtained from the 2-D scientific tool and 1-D engineering tool, are validated and synthesized with experimental results for gravity dominated flows inside vertical tube and inclined channel; and, also, for shear/pressure driven flows inside horizontal channels. Furthermore, these simulation tools are employed to demonstrate key differences of physics between gravity dominated and shear/pressure driven flows. A transition map that distinguishes shear driven, gravity driven, and “mixed” driven flow zones within the non-dimensional parameter space that govern these duct flows is presented along with the film thickness and heat transfer correlations that are valid in these zones. It has also been shown that internal condensing flows in a micro-meter scale duct experiences shear driven flow, even in different gravitational environments. The full 2-D steady computational tool has been employed to investigate the length of annularity. The result for a shear driven flow in a horizontal channel shows that in absence of any noise or pressure fluctuation at the inlet, the onset of non-annularity is partly due to insufficient shear at the liquid-vapor interface. This result is being further corroborated/investigated by R. R. Naik with the help of the unsteady simulation tool. The condensing flow results and flow physics understanding developed through these simulation tools will be instrumental in reliable design of modern micro-scale and spacebased thermal systems.
Resumo:
Since product take-back is mandated in Europe, and has effects for producers worldwide including the U.S., designing efficient forward and reverse supply chain networks is becoming essential for business viability. Centralizing production facilities may reduce costs but perhaps not environmental impacts. Decentralizing a supply chain may reduce transportation environmental impacts but increase capital costs. Facility location strategies of centralization or decentralization are tested for companies with supply chains that both take back and manufacture products. Decentralized and centralized production systems have different effects on the environment, industry and the economy. Decentralized production systems cluster suppliers within the geographical market region that the system serves. Centralized production systems have many suppliers spread out that meet all market demand. The point of this research is to help further the understanding of company decision-makers about impacts to the environment and costs when choosing a decentralized or centralized supply chain organizational strategy. This research explores; what degree of centralization for a supply chain makes the most financial and environmental sense for siting facilities; and which factories are in the best location to handle the financial and environmental impacts of particular processing steps needed for product manufacture. This research considered two examples of facility location for supply chains when products are taken back; the theoretical case involved shoe resoling and a real world case study considered the location of operations for a company that reclaims multiple products for use as material inputs. For the theoretical example a centralized strategy to facility location was optimal: whereas for the case study a decentralized strategy to facility location was best. In conclusion, it is not possible to say that a centralized or decentralized strategy to facility location is in general best for a company that takes back products. Each company’s specific concerns, needs, and supply chain details will determine which degree of centralization creates the optimal strategy for siting their facilities.
Resumo:
Typical internal combustion engines lose about 75% of the fuel energy through the engine coolant, exhaust and surface radiation. Most of the heat generated comes from converting the chemical energy in the fuel to mechanical energy and in turn thermal energy is produced. In general, the thermal energy is unutilized and thus wasted. This report describes the analysis of a novel waste heat recovery (WHR) system that operates on a Rankine cycle. This novel WHR system consists of a second piston within the existing piston to reduce losses associated with compression and exhaust strokes in a four-cycle engine. The wasted thermal energy recovered from the coolant and exhaust systems generate a high temperature and high pressure working fluid which is used to power the modified piston assembly. Cycle simulation shows that a large, stationary natural gas spark ignition engine produces enough waste heat to operate the novel WHR system. With the use of this system, the stationary gas compression ignition engine running at 900 RPM and full load had a net increase of 177.03 kW (240.7 HP). This increase in power improved the brake fuel conversion efficiency by 4.53%.
Resumo:
An optimizing compiler internal representation fundamentally affects the clarity, efficiency and feasibility of optimization algorithms employed by the compiler. Static Single Assignment (SSA) as a state-of-the-art program representation has great advantages though still can be improved. This dissertation explores the domain of single assignment beyond SSA, and presents two novel program representations: Future Gated Single Assignment (FGSA) and Recursive Future Predicated Form (RFPF). Both FGSA and RFPF embed control flow and data flow information, enabling efficient traversal program information and thus leading to better and simpler optimizations. We introduce future value concept, the designing base of both FGSA and RFPF, which permits a consumer instruction to be encountered before the producer of its source operand(s) in a control flow setting. We show that FGSA is efficiently computable by using a series T1/T2/TR transformation, yielding an expected linear time algorithm for combining together the construction of the pruned single assignment form and live analysis for both reducible and irreducible graphs. As a result, the approach results in an average reduction of 7.7%, with a maximum of 67% in the number of gating functions compared to the pruned SSA form on the SPEC2000 benchmark suite. We present a solid and near optimal framework to perform inverse transformation from single assignment programs. We demonstrate the importance of unrestricted code motion and present RFPF. We develop algorithms which enable instruction movement in acyclic, as well as cyclic regions, and show the ease to perform optimizations such as Partial Redundancy Elimination on RFPF.
Resumo:
A mass‐balance model for Lake Superior was applied to polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and mercury to determine the major routes of entry and the major mechanisms of loss from this ecosystem as well as the time required for each contaminant class to approach steady state. A two‐box model (water column, surface sediments) incorporating seasonally adjusted environmental parameters was used. Both numerical (forward Euler) and analytical solutions were employed and compared. For validation, the model was compared with current and historical concentrations and fluxes in the lake and sediments. Results for PCBs were similar to prior work showing that air‐water exchange is the most rapid input and loss process. The model indicates that mercury behaves similarly to a moderately‐chlorinated PCB, with air‐water exchange being a relatively rapid input and loss process. Modeled accumulation fluxes of PBDEs in sediments agreed with measured values reported in the literature. Wet deposition rates were about three times greater than dry particulate deposition rates for PBDEs. Gas deposition was an important process for tri‐ and tetra‐BDEs (BDEs 28 and 47), but not for higher‐brominated BDEs. Sediment burial was the dominant loss mechanism for most of the PBDE congeners while volatilization was still significant for tri‐ and tetra‐BDEs. Because volatilization is a relatively rapid loss process for both mercury and the most abundant PCBs (tri‐ through penta‐), the model predicts that similar times (from 2 ‐ 10 yr) are required for the compounds to approach steady state in the lake. The model predicts that if inputs of Hg(II) to the lake decrease in the future then concentrations of mercury in the lake will decrease at a rate similar to the historical decline in PCB concentrations following the ban on production and most uses in the U.S. In contrast, PBDEs are likely to respond more slowly if atmospheric concentrations are reduced in the future because loss by volatilization is a much slower process for PBDEs, leading to lesser overall loss rates for PBDEs in comparison to PCBs and mercury. Uncertainties in the chemical degradation rates and partitioning constants of PBDEs are the largest source of uncertainty in the modeled times to steady‐state for this class of chemicals. The modeled organic PBT loading rates are sensitive to uncertainties in scavenging efficiencies by rain and snow, dry deposition velocity, watershed runoff concentrations, and uncertainties in air‐water exchange such as the effect of atmospheric stability.
Resumo:
This dissertation addresses the need for a strategy that will help readers new to new media texts interpret such texts. While scholars in multimodal and new media theory posit rubrics that offer ways to understand how designers use the materialities and media found in overtly designed, new media texts (see, e.g,, Wysocki, 2004a), these strategies do not account for how readers have to make meaning from those texts. In this dissertation, I discuss how these theories, such as Lev Manovich’s (2001) five principles for determining the new media potential of texts and Gunther Kress and Theo van Leeuwen’s (2001) four strata of designing multimodal texts, are inadequate to the job of helping readers understand new media from a rhetorical perspective. I also explore how literary theory, specifically Wolfgang Iser’s (1978) description of acts of interpretation, can help audiences understand why readers are often unable to interpret the multiple, unexpected modes of communication used in new media texts. Rhetorical theory, explored in a discussion of Sonja Foss’s (2004) units of analysis, is helpful in bringing the reader into a situated context with a new media text, although these units of analysis, like Iser’s process, suggests that a reader has some prior experience interpreting a text-as-artifact. Because of this assumption of knowledge put forth by all of the theories explored within, I argue that none alone is useful to help readers engage with and interpret new media texts. However, I argue that a heuristic which combines elements from each of these theories, as well as additional ones, is more useful for readers who are new to interpreting the multiple modes of communication that are often used in unconventional ways in new media texts. I describe that heuristic in the final chapter and discuss how it can be useful to a range of texts besides those labelled new media.
Resumo:
The purpose of this project was to investigate the effect of using of data collection technology on student attitudes towards science instruction. The study was conducted over the course of two years at Madison High School in Adrian, Michigan, primarily in college preparatory physics classes, but also in one college preparatory chemistry class and one environmental science class. A preliminary study was conducted at a Lenawee County Intermediate Schools student summer environmental science day camp. The data collection technology used was a combination of Texas Instruments TI-84 Silver Plus graphing calculators and Vernier LabPro data collection sleds with various probeware attachments, including motion sensors, pH probes and accelerometers. Students were given written procedures for most laboratory activities and were provided with data tables and analysis questions to answer about the activities. The first year of the study included a pretest and posttest measuring student attitudes towards the class they were enrolled in. Pre-test and post-test data were analyzed to determine effect size, which was found to be very small (Coe, 2002). The second year of the study focused only on a physics class and used Keller’s ARCS model for measuring student motivation based on the four aspects of motivation: Attention, Relevance, Confidence and Satisfaction (Keller, 2010). According to this model, it was found that there were two distinct groups in the class, one of which was motivated to learn and the other that was not. The data suggest that the use of data collection technology in science classes should be started early in a student’s career, possibly in early middle school or late elementary. This would build familiarity with the equipment and allow for greater exploration by the student as they progress through high school and into upper level science courses.
Resumo:
Electrochemical capacitors have been an important development in recent years in the field of energy storage. Capacitors can be developed by utilizing either double layer capacitance at the electrode/solution interfaces alone or in combination with a battery electrode associated with a faradic redox process in one electrode. An asymmetric capacitor consisting of electrochemically deposited nickel hydroxide, supported on carbon foam as a positive electrode and carbon sheet as a negative electrode has been successfully assembled and cycled. One objective of this study has been to demonstrate the viability of the nickel carbon foam positive electrode, especially in terms of cycle life. Electrochemical characterization shows stable, high cycle performance in 26 wt. % KOH electrolyte with a maximum energy density of 4.1 Wh/Kg and a relaxation time constant of 6.24 s. This cell has demonstrated high cycle life, 14,500 cycles, with efficiency better than 98%. In addition, the cell failure mechanism and self-discharge behavior of the aforesaid capacitor are analyzed.
Resumo:
Compiler optimizations help to make code run faster at runtime. When the compilation is done before the program is run, compilation time is less of an issue, but how do on-the-fly compilation and optimization impact the overall runtime? If the compiler must compete with the running application for resources, the running application will take more time to complete. This paper investigates the impact of specific compiler optimizations on the overall runtime of an application. A foldover Plackett and Burman design is used to choose compiler optimizations that appear to contribute to shorter overall runtimes. These selected optimizations are compared with the default optimization levels in the Jikes RVM. This method selects optimizations that result in a shorter overall runtime than the default O0, O1, and O2 levels. This shows that careful selection of compiler optimizations can have a significant, positive impact on overall runtime.
Resumo:
Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI.
Resumo:
Boreal peatlands are important in the global carbon cycle. Despite covering only 3% of the global land area, peatlands store approximately one third of all soil carbon. Temperature is one of the major drivers in peatland carbon cycling as it affects both plant production and CO2 fluxes from soils. However, it is relatively unknown how boreal peatland plant photosynthesis is affected by higher temperatures. Therefore, we measured plant photosynthetic rates under two different warming treatments in a poor fen in Northern Michigan. Eighteen plots were established that were divided into three treatments: control, open-top chamber (OTC) warming and infrared (IR) lamp warming. Previous work at this site has shown that there was a significant increase in canopy and peat temperature with IR warming (5°C and 1.4°C respectively), while the OTC’s had mixed overall warming. Plots were divided equally into lawns and hummocks. We measured mid-day carbon dioxide (CO2) uptake on sedges (Carex utriculata), shrubs (Chamaedaphne calyculata) and Sphagnum mosses. Sphagnum moss net primary production (NPP) was also measured with cranked wires and compared with CO2 uptake. Our results indicate that there was no significant difference in sedge CO2 uptake, while shrub CO2 uptake significantly decreased with warming. A significant increase occurred in Sphagnum moss gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE). Contrary to the positive CO2 exchange of Sphagnum, overall NPP decreased significantly in hummocks with both warming treatments. The results of the study indicate that temperature partly limits the photosynthetic capacity of plants in sub-boreal peatlands, but not all species respond similarly to higher temperatures.
Resumo:
Portfolio use in writing studies contexts is becoming ubiquitous and, as such, portfolios are in danger of being rendered meaningless and thus require that we more fully theorize and historicize portfolios. To this end, I examine portfolios: both the standardized portfolio used for assessment purposes and the personalized portfolio used for entering the job market. I take a critical look at portfolios as a form of technology and acknowledge some of the dangers of blindly using portfolios for gaining employment in the current economic structure of fast capitalism. As educators in the writing studies fields, it is paramount that instructors have a critical awareness of the consequences of portfolio creation on students as designers, lifelong learners, and citizens of a larger society. I argue that a better understanding of the pedagogical implications for portfolio use is imperative before implementing them in the classroom, and that a social-epistemic approach provides a valuable rethinking of portfolio use for assessment purposes. Further, I argue for the notions of meditation and transformation to be added alongside collection, selection, and reflection because they enable portfolio designers and evaluators alike to thoughtfully consider new ways of meaning-making and innovation. Also important and included with meditation and transformation is the understanding that students are ideologically positioned in the educational system. For them to begin recognizing their situatedness is a step toward becoming designers of change. The portfolio can be a site for that change, and a way for them to document their own learning and ways of making meaning over a lifetime.
Resumo:
Interest in the study of magnetic/non-magnetic multilayered structures took a giant leap since Grünberg and his group established that the interlayer exchange coupling (IEC) is a function of the non-magnetic spacer width. This interest was further fuelled by the discovery of the phenomenal Giant Magnetoresistance (GMR) effect. In fact, in 2007 Albert Fert and Peter Grünberg were awarded the Nobel Prize in Physics for their contribution to the discovery of GMR. GMR is the key property that is being used in the read-head of the present day computer hard drive as it requires a high sensitivity in the detection of magnetic field. The recent increase in demand for device miniaturization encouraged researchers to look for GMR in nanoscale multilayered structures. In this context, one dimensional(1-D) multilayerd nanowire structure has shown tremendous promise as a viable candidate for ultra sensitive read head sensors. In fact, the phenomenal giant magnetoresistance(GMR) effect, which is the novel feature of the currently used multilayered thin film, has already been observed in multilayered nanowire systems at ambient temperature. Geometrical confinement of the supper lattice along the 2-dimensions (2-D) to construct the 1-D multilayered nanowire prohibits the minimization of magnetic interaction- offering a rich variety of magnetic properties in nanowire that can be exploited for novel functionality. In addition, introduction of non-magnetic spacer between the magnetic layers presents additional advantage in controlling magnetic properties via tuning the interlayer magnetic interaction. Despite of a large volume of theoretical works devoted towards the understanding of GMR and IEC in super lattice structures, limited theoretical calculations are reported in 1-D multilayered systems. Thus to gauge their potential application in new generation magneto-electronic devices, in this thesis, I have discussed the usage of first principles density functional theory (DFT) in predicting the equilibrium structure, stability as well as electronic and magnetic properties of one dimensional multilayered nanowires. Particularly, I have focused on the electronic and magnetic properties of Fe/Pt multilayered nanowire structures and the role of non-magnetic Pt spacer in modulating the magnetic properties of the wire. It is found that the average magnetic moment per atom in the nanowire increases monotonically with an ~1/(N(Fe)) dependance, where N(Fe) is the number of iron layers in the nanowire. A simple model based upon the interfacial structure is given to explain the 1/(N(Fe)) trend in magnetic moment obtained from the first principle calculations. A new mechanism, based upon spin flip with in the layer and multistep electron transfer between the layers, is proposed to elucidate the enhancement of magnetic moment of Iron atom at the Platinum interface. The calculated IEC in the Fe/Pt multilayered nanowire is found to switch sign as the width of the non-magnetic spacer varies. The competition among short and long range direct exchange and the super exchange has been found to play a key role for the non-monotonous sign in IEC depending upon the width of the Platinum spacer layer. The calculated magnetoresistance from Julliere's model also exhibit similar switching behavior as that of IEC. The universality of the behavior of exchange coupling has also been looked into by introducing different non-magnetic spacers like Palladium, Copper, Silver, and Gold in between magnetic Iron layers. The nature of hybridization between Fe and other non-magnetic spacer is found to dictate the inter layer magnetic interaction. For example, in Fe/Pd nanowire the d-p hybridization in two spacer layer case favors anti-ferromagnetic (AFM) configuration over ferromagnetic (FM) configuration. However, the hybridization between half-filled Fe(d) and filled Cu(p) state in Fe/Cu nanowire favors FM coupling in the 2-spacer system.
Resumo:
Caspases are known to be involved in animal programmed cell death (PCD). The objective of this thesis was to use gene expression analysis and reverse genetics to determine if Arabidopsis metacaspase (AtMC) genes play a role in plant PCD. The majority of AtMC genes were found to be expressed nearly constitutively in various tissues, developmental stages, and under various inductive treatments. Transgenic Arabidopsis plants generated with AtMCpromoter::AtMCgene::GUS fusions showed expression of the reporter gene in leaves, vasculature, trichomes, siliques, anthers, and during embryo development. Preliminary phenotypic characterization of single and double Arabidopsis AtMC loss-of-function mutants suggested that the expression of the AtMC genes are highly functionally redundant. Nevertheless, our results suggest that AtMC1, 2, 4, 6 and 9 may be directly involved in rosette and/or stem development. Although this study does not provide a definitive role of MCs in plant PCD, it lays the foundation for their further in-depth analysis.