17 resultados para optimization-based similarity reasoning
Resumo:
With the insatiable curiosity of human beings to explore the universe and our solar system, it is essential to benefit from larger propulsion capabilities to execute efficient transfers and carry more scientific equipment. In the field of space trajectory optimization the fundamental advances in using low-thrust propulsion and exploiting the multi-body dynamics has played pivotal role in designing efficient space mission trajectories. The former provides larger cumulative momentum change in comparison with the conventional chemical propulsion whereas the latter results in almost ballistic trajectories with negligible amount of propellant. However, the problem of space trajectory design translates into an optimal control problem which is, in general, time-consuming and very difficult to solve. Therefore, the goal of the thesis is to address the above problem by developing a methodology to simplify and facilitate the process of finding initial low-thrust trajectories in both two-body and multi-body environments. This initial solution will not only provide mission designers with a better understanding of the problem and solution but also serves as a good initial guess for high-fidelity optimal control solvers and increases their convergence rate. Almost all of the high-fidelity solvers enjoy the existence of an initial guess that already satisfies the equations of motion and some of the most important constraints. Despite the nonlinear nature of the problem, it is sought to find a robust technique for a wide range of typical low-thrust transfers with reduced computational intensity. Another important aspect of our developed methodology is the representation of low-thrust trajectories by Fourier series with which the number of design variables reduces significantly. Emphasis is given on simplifying the equations of motion to the possible extent and avoid approximating the controls. These facts contribute to speeding up the solution finding procedure. Several example applications of two and three-dimensional two-body low-thrust transfers are considered. In addition, in the multi-body dynamic, and in particular the restricted-three-body dynamic, several Earth-to-Moon low-thrust transfers are investigated.
Resumo:
Heuristic optimization algorithms are of great importance for reaching solutions to various real world problems. These algorithms have a wide range of applications such as cost reduction, artificial intelligence, and medicine. By the term cost, one could imply that that cost is associated with, for instance, the value of a function of several independent variables. Often, when dealing with engineering problems, we want to minimize the value of a function in order to achieve an optimum, or to maximize another parameter which increases with a decrease in the cost (the value of this function). The heuristic cost reduction algorithms work by finding the optimum values of the independent variables for which the value of the function (the “cost”) is the minimum. There is an abundance of heuristic cost reduction algorithms to choose from. We will start with a discussion of various optimization algorithms such as Memetic algorithms, force-directed placement, and evolution-based algorithms. Following this initial discussion, we will take up the working of three algorithms and implement the same in MATLAB. The focus of this report is to provide detailed information on the working of three different heuristic optimization algorithms, and conclude with a comparative study on the performance of these algorithms when implemented in MATLAB. In this report, the three algorithms we will take in to consideration will be the non-adaptive simulated annealing algorithm, the adaptive simulated annealing algorithm, and random restart hill climbing algorithm. The algorithms are heuristic in nature, that is, the solution these achieve may not be the best of all the solutions but provide a means to reach a quick solution that may be a reasonably good solution without taking an indefinite time to implement.