22 resultados para Spark ignition engines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-cylinder pressure transducers have been used for decades to record combustion pressure inside a running engine. However, due to the extreme operating environment, transducer design and installation must be considered in order to minimize measurement error. One such error is caused by thermal shock, where the pressure transducer experiences a high heat flux that can distort the pressure transducer diaphragm and also change the crystal sensitivity. This research focused on investigating the effects of thermal shock on in-cylinder pressure transducer data quality using a 2.0L, four-cylinder, spark-ignited, direct-injected, turbo-charged GM engine. Cylinder four was modified with five ports to accommodate pressure transducers of different manufacturers. They included an AVL GH14D, an AVL GH15D, a Kistler 6125C, and a Kistler 6054AR. The GH14D, GH15D, and 6054AR were M5 size transducers. The 6125C was a larger, 6.2mm transducer. Note that both of the AVL pressure transducers utilized a PH03 flame arrestor. Sweeps of ignition timing (spark sweep), engine speed, and engine load were performed to study the effects of thermal shock on each pressure transducer. The project consisted of two distinct phases which included experimental engine testing as well as simulation using a commercially available software package. A comparison was performed to characterize the quality of the data between the actual cylinder pressure and the simulated results. This comparison was valuable because the simulation results did not include thermal shock effects. All three sets of tests showed the peak cylinder pressure was basically unaffected by thermal shock. Comparison of the experimental data with the simulated results showed very good correlation. The spark sweep was performed at 1300 RPM and 3.3 bar NMEP and showed that the differences between the simulated results (no thermal shock) and the experimental data for the indicated mean effective pressure (IMEP) and the pumping mean effective pressure (PMEP) were significantly less than the published accuracies. All transducers had an IMEP percent difference less than 0.038% and less than 0.32% for PMEP. Kistler and AVL publish that the accuracy of their pressure transducers are within plus or minus 1% for the IMEP (AVL 2011; Kistler 2011). In addition, the difference in average exhaust absolute pressure between the simulated results and experimental data was the greatest for the two Kistler pressure transducers. The location and lack of flame arrestor are believed to be the cause of the increased error. For the engine speed sweep, the torque output was held constant at 203 Nm (150 ft-lbf) from 1500 to 4000 RPM. The difference in IMEP was less than 0.01% and the PMEP was less than 1%, except for the AVL GH14D which was 5% and the AVL GH15DK which was 2.25%. A noticeable error in PMEP appeared as the load increased during the engine speed sweeps, as expected. The load sweep was conducted at 2000 RPM over a range of NMEP from 1.1 to 14 bar. The difference in IMEP values were less 0.08% while the PMEP values were below 1% except for the AVL GH14D which was 1.8% and the AVL GH15DK which was at 1.25%. In-cylinder pressure transducer data quality was effectively analyzed using a combination of experimental data and simulation results. Several criteria can be used to investigate the impact of thermal shock on data quality as well as determine the best location and thermal protection for various transducers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the advent of automobiles, alcohol has been considered a possible engine fuel1,2. With the recent increased concern about the high price of crude oil due to fluctuating supply and demand and environmental issues, interest in alcohol based fuels has increased2,3. However, using pure alcohols or blends with conventional fuels in high percentages requires changes to the engine and fuel system design2. This leads to the need for a simple and accurate conventional fuels-alcohol blends combustion models that can be used in developing parametric burn rate and knock combustion models for designing more efficient Spark Ignited (SI) engines. To contribute to this understanding, numerical simulations were performed to obtain detailed characteristics of Gasoline-Ethanol blends with respect to Laminar Flame Speed (LFS), autoignition and Flame-Wall interactions. The one-dimensional premixed flame code CHEMKIN® was applied to simulate the burning velocity and autoignition characteristics using the freely propagating model and closed homogeneous reactor model respectively. Computational Fluid Dynamics (CFD) was used to obtain detailed flow, temperature, and species fields for Flame-wall interactions. A semi-detailed validated chemical kinetic model for a gasoline surrogate fuel developed by Andrae and Head4 was used for the study of LFS and Autoignition. For the quenching study, a skeletal chemical kinetic mechanism of gasoline surrogate, having 50 species and 174 reactions was used. The surrogate fuel was defined as a mixture of pure n-heptane, isooctane, and toluene. For LFS study, the ethanol volume fraction was varied from 0 to 85%, initial pressure from 4 to 8 bar, initial temperature from 300 to 900K, and dilution from 0 to 32%. Whereas for Autoignition study, the ethanol volume fraction was varied between 0 to 85%, initial pressure was varied between 20 to 60 bar, initial temperature was varied between 800 to 1200K, and the dilution was varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a SI engine. For quenching study three Ethanol blends, namely E0, E25 and E85 are described in detail at an initial pressure of 8 atm and 17 atm. Initial wall temperature was taken to be 400 K. Quenching thicknesses and heat fluxes to the wall were computed. The laminar flame speed was found to increase with ethanol concentration and temperature but decrease with pressure and dilution. The autoignition time was found to increase with ethanol concentration at lower temperatures but was found to decrease marginally at higher temperatures. The autoignition time was also found to decrease with pressure and equivalence ratio but increase with dilution. The average quenching thickness was found to decrease with an increase in Ethanol concentration in the blend. Heat flux to the wall increased with increase in ethanol percentage in the blend and at higher initial pressures. Whereas the wall heat flux decreased with an increase in dilution. Unburned Hydrocarbon (UHC) and CO % was also found to decrease with ethanol concentration in the blend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The U.S. Renewable Fuel Standard mandates that by 2022, 36 billion gallons of renewable fuels must be produced on a yearly basis. Ethanol production is capped at 15 billion gallons, meaning 21 billion gallons must come from different alternative fuel sources. A viable alternative to reach the remainder of this mandate is iso-butanol. Unlike ethanol, iso-butanol does not phase separate when mixed with water, meaning it can be transported using traditional pipeline methods. Iso-butanol also has a lower oxygen content by mass, meaning it can displace more petroleum while maintaining the same oxygen concentration in the fuel blend. This research focused on studying the effects of low level alcohol fuels on marine engine emissions to assess the possibility of using iso-butanol as a replacement for ethanol. Three marine engines were used in this study, representing a wide range of what is currently in service in the United States. Two four-stroke engine and one two-stroke engine powered boats were tested in the tributaries of the Chesapeake Bay, near Annapolis, Maryland over the course of two rounds of weeklong testing in May and September. The engines were tested using a standard test cycle and emissions were sampled using constant volume sampling techniques. Specific emissions for two-stroke and four-stroke engines were compared to the baseline indolene tests. Because of the nature of the field testing, limited engine parameters were recorded. Therefore, the engine parameters analyzed aside from emissions were the operating relative air-to-fuel ratio and engine speed. Emissions trends from the baseline test to each alcohol fuel for the four-stroke engines were consistent, when analyzing a single round of testing. The same trends were not consistent when comparing separate rounds because of uncontrolled weather conditions and because the four-stroke engines operate without fuel control feedback during full load conditions. Emissions trends from the baseline test to each alcohol fuel for the two-stroke engine were consistent for all rounds of testing. This is due to the fact the engine operates open-loop, and does not provide fueling compensation when fuel composition changes. Changes in emissions with respect to the baseline for iso-butanol were consistent with changes for ethanol. It was determined iso-butanol would make a viable replacement for ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the past three decades the automotive industry is facing two main conflicting challenges to improve fuel economy and meet emissions standards. This has driven the engineers and researchers around the world to develop engines and powertrain which can meet these two daunting challenges. Focusing on the internal combustion engines there are very few options to enhance their performance beyond the current standards without increasing the price considerably. The Homogeneous Charge Compression Ignition (HCCI) engine technology is one of the combustion techniques which has the potential to partially meet the current critical challenges including CAFE standards and stringent EPA emissions standards. HCCI works on very lean mixtures compared to current SI engines, resulting in very low combustion temperatures and ultra-low NOx emissions. These engines when controlled accurately result in ultra-low soot formation. On the other hand HCCI engines face a problem of high unburnt hydrocarbon and carbon monoxide emissions. This technology also faces acute combustion controls problem, which if not dealt properly with yields highly unfavorable operating conditions and exhaust emissions. This thesis contains two main parts. One part deals in developing an HCCI experimental setup and the other focusses on developing a grey box modelling technique to control HCCI exhaust gas emissions. The experimental part gives the complete details on modification made on the stock engine to run in HCCI mode. This part also comprises details and specifications of all the sensors, actuators and other auxiliary parts attached to the conventional SI engine in order to run and monitor the engine in SI mode and future SI-HCCI mode switching studies. In the latter part around 600 data points from two different HCCI setups for two different engines are studied. A grey-box model for emission prediction is developed. The grey box model is trained with the use of 75% data and the remaining data is used for validation purpose. An average of 70% increase in accuracy for predicting engine performance is found while using the grey-box over an empirical (black box) model during this study. The grey-box model provides a solution for the difficulty faced for real time control of an HCCI engine. The grey-box model in this thesis is the first study in literature to develop a control oriented model for predicting HCCI engine emissions for control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of combustion metrics for a diesel engine has the potential of providing feedback for closed-loop combustion phasing control to meet current and upcoming emission and fuel consumption regulations. This thesis focused on the estimation of combustion metrics including start of combustion (SOC), crank angle location of 50% cumulative heat release (CA50), peak pressure crank angle location (PPCL), and peak pressure amplitude (PPA), peak apparent heat release rate crank angle location (PACL), mean absolute pressure error (MAPE), and peak apparent heat release rate amplitude (PAA). In-cylinder pressure has been used in the laboratory as the primary mechanism for characterization of combustion rates and more recently in-cylinder pressure has been used in series production vehicles for feedback control. However, the intrusive measurement with the in-cylinder pressure sensor is expensive and requires special mounting process and engine structure modification. As an alternative method, this work investigated block mounted accelerometers to estimate combustion metrics in a 9L I6 diesel engine. So the transfer path between the accelerometer signal and the in-cylinder pressure signal needs to be modeled. Depending on the transfer path, the in-cylinder pressure signal and the combustion metrics can be accurately estimated - recovered from accelerometer signals. The method and applicability for determining the transfer path is critical in utilizing an accelerometer(s) for feedback. Single-input single-output (SISO) frequency response function (FRF) is the most common transfer path model; however, it is shown here to have low robustness for varying engine operating conditions. This thesis examines mechanisms to improve the robustness of FRF for combustion metrics estimation. First, an adaptation process based on the particle swarm optimization algorithm was developed and added to the single-input single-output model. Second, a multiple-input single-output (MISO) FRF model coupled with principal component analysis and an offset compensation process was investigated and applied. Improvement of the FRF robustness was achieved based on these two approaches. Furthermore a neural network as a nonlinear model of the transfer path between the accelerometer signal and the apparent heat release rate was also investigated. Transfer path between the acoustical emissions and the in-cylinder pressure signal was also investigated in this dissertation on a high pressure common rail (HPCR) 1.9L TDI diesel engine. The acoustical emissions are an important factor in the powertrain development process. In this part of the research a transfer path was developed between the two and then used to predict the engine noise level with the measured in-cylinder pressure as the input. Three methods for transfer path modeling were applied and the method based on the cepstral smoothing technique led to the most accurate results with averaged estimation errors of 2 dBA and a root mean square error of 1.5dBA. Finally, a linear model for engine noise level estimation was proposed with the in-cylinder pressure signal and the engine speed as components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical access engine integrated with the diagnostic and optical measurement techniques is a great platform for engine research because it provides clear visual access to the combustion chamber inside the engines. An optical access engine customized based on a 4-cylinder spark ignited direct injection (SIDI) production engine is located in the Advanced Power Systems Laboratories (APS LABS) at Michigan Technological University. This optical access engine inside the test cell has been set up for different engine research. In this report, two SAE papers in engine research utilizing the optical access engine are reviewed to gain basic understanding of the methodology. Though the optical engine in APS LABS is a little bit different from the engines used in the literature, the methodology in the papers provides guidelines for engine research through optical access engines. In addition, the optical access engine instrumentation including the test cell setup and the optical engine setup is described in detail in the report providing a solid record for later troubleshooting and reference. Finally, the motoring tests, firing tests and optical imaging experiment on the optical engine have been performed to validate the instrumentation. This report only describes so far the instrumentation of the optical engine in the APS LABS by April 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Homogeneous Charge Compression Ignition (HCCI) engine is a promising combustion concept for reducing NOx and particulate matter (PM) emissions and providing a high thermal efficiency in internal combustion engines. This concept though has limitations in the areas of combustion control and achieving stable combustion at high loads. For HCCI to be a viable option for on-road vehicles, further understanding of its combustion phenomenon and its control are essential. Thus, this thesis has a focus on both the experimental setup of an HCCI engine at Michigan Technological University (MTU) and also developing a physical numerical simulation model called the Sequential Model for Residual Affected HCCI (SMRH) to investigate performance of HCCI engines. The primary focus is on understanding the effects of intake and exhaust valve timings on HCCI combustion. For the experimental studies, this thesis provided the contributions for development of HCCI setup at MTU. In particular, this thesis made contributions in the areas of measurement of valve profiles, measurement of piston to valve contact clearance for procuring new pistons for further studies of high geometric compression ratio HCCI engines. It also consists of developing and testing a supercharging station and the setup of an electrical air heater to extend the HCCI operating region. The HCCI engine setup is based on a GM 2.0 L LHU Gen 1 engine which is a direct injected engine with variable valve timing (VVT) capabilities. For the simulation studies, a computationally efficient modeling platform has been developed and validated against experimental data from a single cylinder HCCI engine. In-cylinder pressure trace, combustion phasing (CA10, CA50, BD) and performance metrics IMEP, thermal efficiency, and CO emission are found to be in good agreement with experimental data for different operating conditions. Effects of phasing intake and exhaust valves are analyzed using SMRH. In addition, a novel index called Fuel Efficiency and Emissions (FEE) index is defined and is used to determine the optimal valve timings for engine operation through the use of FEE contour maps.