25 resultados para Modeling of purification operations inbiotechnology
Resumo:
For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in use today. Several new transistor designs, some designed and built here at Michigan Tech, involve electrons tunneling their way through arrays of nanoparticles. We use a multi-scale approach to model these devices and study their behavior. For investigating the tunneling characteristics of the individual junctions, we use a first-principles approach to model conduction between sub-nanometer gold particles. To estimate the change in energy due to the movement of individual electrons, we use the finite element method to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us to use our knowledge of these details to simulate the dynamics of an entire device— sometimes consisting of hundreds of individual particles—and watch as a device ‘turns on’ and starts conducting an electric current. Scanning tunneling microscopy (STM) and the closely related scanning tunneling spectroscopy (STS) are a family of powerful experimental techniques that allow for the probing and imaging of surfaces and molecules at atomic resolution. However, interpretation of the results often requires comparison with theoretical and computational models. We have developed a new method for calculating STM topographs and STS spectra. This method combines an established method for approximating the geometric variation of the electronic density of states, with a modern method for calculating spin-dependent tunneling currents, offering a unique balance between accuracy and accessibility.
Resumo:
The municipality of San Juan La Laguna, Guatemala is home to approximately 5,200 people and located on the western side of the Lake Atitlán caldera. Steep slopes surround all but the eastern side of San Juan. The Lake Atitlán watershed is susceptible to many natural hazards, but most predictable are the landslides that can occur annually with each rainy season, especially during high-intensity events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the Atitlán region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. This study used data from multiple attributes, at every landslide and non-landslide point, and applied different multivariate analyses to optimize a model for landslides prediction during high-intensity precipitation events like Hurricane Stan. The attributes considered in this study are: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The attributes were pre-evaluated for their ability to predict landslides using four different attribute evaluators, all available in the open source data mining software Weka: filtered subset, information gain, gain ratio and chi-squared. Three multivariate algorithms (decision tree J48, logistic regression and BayesNet) were optimized for landslide prediction using different attributes. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points. The probability map developed in this study was also compared to the results of a bivariate landslide susceptibility analysis conducted for the watershed, encompassing Lake Atitlán and San Juan. Landslides from Tropical Storm Agatha 2010 were used to independently validate this study’s multivariate model and the bivariate model. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.
Resumo:
Volcán Pacaya is one of three currently active volcanoes in Guatemala. Volcanic activity originates from the local tectonic subduction of the Cocos plate beneath the Caribbean plate along the Pacific Guatemalan coast. Pacaya is characterized by generally strombolian type activity with occasional larger vulcanian type eruptions approximately every ten years. One particularly large eruption occurred on May 27, 2010. Using GPS data collected for approximately 8 years before this eruption and data from an additional three years of collection afterwards, surface movement covering the period of the eruption can be measured and used as a tool to help understand activity at the volcano. Initial positions were obtained from raw data using the Automatic Precise Positioning Service provided by the NASA Jet Propulsion Laboratory. Forward modeling of observed 3-D displacements for three time periods (before, covering and after the May 2010 eruption) revealed that a plausible source for deformation is related to a vertical dike or planar surface trending NNW-SSE through the cone. For three distinct time periods the best fitting models describe deformation of the volcano: 0.45 right lateral movement and 0.55 m tensile opening along the dike mentioned above from October 2001 through January 2009 (pre-eruption); 0.55 m left lateral slip along the dike mentioned above for the period from January 2009 and January 2011 (covering the eruption); -0.025 m dip slip along the dike for the period from January 2011 through March 2013 (post-eruption). In all bestfit models the dike is oriented with a 75° westward dip. These data have respective RMS misfit values of 5.49 cm, 12.38 cm and 6.90 cm for each modeled period. During the time period that includes the eruption the volcano most likely experienced a combination of slip and inflation below the edifice which created a large scar at the surface down the northern flank of the volcano. All models that a dipping dike may be experiencing a combination of inflation and oblique slip below the edifice which augments the possibility of a westward collapse in the future.
Resumo:
Abstract The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with the ReaxFF is dependent on the simulated temperature and selected parameter set, as are the predicted reaction rates. It is also determined that different carbon-based reactive gases react at different rates, and that the predicted equilibrium structures are generally the same for the different ReaxFF parameter sets, except in the case of the predicted formation of large graphitic structures with the Chenoweth parameter set under specific conditions.
Resumo:
Determination of combustion metrics for a diesel engine has the potential of providing feedback for closed-loop combustion phasing control to meet current and upcoming emission and fuel consumption regulations. This thesis focused on the estimation of combustion metrics including start of combustion (SOC), crank angle location of 50% cumulative heat release (CA50), peak pressure crank angle location (PPCL), and peak pressure amplitude (PPA), peak apparent heat release rate crank angle location (PACL), mean absolute pressure error (MAPE), and peak apparent heat release rate amplitude (PAA). In-cylinder pressure has been used in the laboratory as the primary mechanism for characterization of combustion rates and more recently in-cylinder pressure has been used in series production vehicles for feedback control. However, the intrusive measurement with the in-cylinder pressure sensor is expensive and requires special mounting process and engine structure modification. As an alternative method, this work investigated block mounted accelerometers to estimate combustion metrics in a 9L I6 diesel engine. So the transfer path between the accelerometer signal and the in-cylinder pressure signal needs to be modeled. Depending on the transfer path, the in-cylinder pressure signal and the combustion metrics can be accurately estimated - recovered from accelerometer signals. The method and applicability for determining the transfer path is critical in utilizing an accelerometer(s) for feedback. Single-input single-output (SISO) frequency response function (FRF) is the most common transfer path model; however, it is shown here to have low robustness for varying engine operating conditions. This thesis examines mechanisms to improve the robustness of FRF for combustion metrics estimation. First, an adaptation process based on the particle swarm optimization algorithm was developed and added to the single-input single-output model. Second, a multiple-input single-output (MISO) FRF model coupled with principal component analysis and an offset compensation process was investigated and applied. Improvement of the FRF robustness was achieved based on these two approaches. Furthermore a neural network as a nonlinear model of the transfer path between the accelerometer signal and the apparent heat release rate was also investigated. Transfer path between the acoustical emissions and the in-cylinder pressure signal was also investigated in this dissertation on a high pressure common rail (HPCR) 1.9L TDI diesel engine. The acoustical emissions are an important factor in the powertrain development process. In this part of the research a transfer path was developed between the two and then used to predict the engine noise level with the measured in-cylinder pressure as the input. Three methods for transfer path modeling were applied and the method based on the cepstral smoothing technique led to the most accurate results with averaged estimation errors of 2 dBA and a root mean square error of 1.5dBA. Finally, a linear model for engine noise level estimation was proposed with the in-cylinder pressure signal and the engine speed as components.
Resumo:
The thermoset epoxy resin EPON 862, coupled with the DETDA hardening agent, are utilized as the polymer matrix component in many graphite (carbon fiber) composites. Because it is difficult to experimentally characterize the interfacial region, computational molecular modeling is a necessary tool for understanding the influence of the interfacial molecular structure on bulk-level material properties. The purpose of this research is to investigate the many possible variables that may influence the interfacial structure and the effect they will have on the mechanical behavior of the bulk level composite. Molecular models are established for EPON 862-DETDA polymer in the presence of a graphite surface. Material characteristics such as polymer mass-density, residual stresses, and molecular potential energy are investigated near the polymer/fiber interface. Because the exact degree of crosslinking in these thermoset systems is not known, many different crosslink densities (degrees of curing) are investigated. It is determined that a region exists near the carbon fiber surface in which the polymer mass density is different than that of the bulk mass density. These surface effects extend ~10 Å into the polymer from the center of the outermost graphite layer. Early simulations predict polymer residual stress levels to be higher near the graphite surface. It is also seen that the molecular potential energy in polymer atoms decreases with increasing crosslink density. New models are then established in order to investigate the interface between EPON 862-DETDA polymer and graphene nanoplatelets (GNPs) of various atomic thicknesses. Mechanical properties are extracted from the models using Molecular Dynamics techniques. These properties are then implemented into micromechanics software that utilizes the generalized method of cells to create representations of macro-scale composites. Micromechanics models are created representing GNP doped epoxy with varying number of graphene layers and interfacial polymer crosslink densities. The initial micromechanics results for the GNP doped epoxy are then taken to represent the matrix component and are re-run through the micromechanics software with the addition of a carbon fiber to simulate a GNP doped epoxy/carbon fiber composite. Micromechanics results agree well with experimental data, and indicate GNPs of 1 to 2 atomic layers to be highly favorable. The effect of oxygen bonded to the surface of the GNPs is lastly investigated. Molecular Models are created for systems with varying graphene atomic thickness, along with different amounts of oxygen species attached to them. Models are created for graphene containing hydroxyl groups only, epoxide groups only, and a combination of epoxide and hydroxyl groups. Results show models of oxidized graphene to decrease in both tensile and shear modulus. Attaching only epoxide groups gives the best results for mechanical properties, though pristine graphene is still favored.
Resumo:
The objective of this research is to synthesize structural composites designed with particular areas defined with custom modulus, strength and toughness values in order to improve the overall mechanical behavior of the composite. Such composites are defined and referred to as 3D-designer composites. These composites will be formed from liquid crystalline polymers and carbon nanotubes. The fabrication process is a variation of rapid prototyping process, which is a layered, additive-manufacturing approach. Composites formed using this process can be custom designed by apt modeling methods for superior performance in advanced applications. The focus of this research is on enhancement of Young's modulus in order to make the final composite stiffer. Strength and toughness of the final composite with respect to various applications is also discussed. We have taken into consideration the mechanical properties of final composite at different fiber volume content as well as at different orientations and lengths of the fibers. The orientation of the LC monomers is supposed to be carried out using electric or magnetic fields. A computer program is modeled incorporating the Mori-Tanaka modeling scheme to generate the stiffness matrix of the final composite. The final properties are then deduced from the stiffness matrix using composite micromechanics. Eshelby's tensor, required to calculate the stiffness tensor using Mori-Tanaka method, is calculated using a numerical scheme that determines the components of the Eshelby's tensor (Gavazzi and Lagoudas 1990). The numerical integration is solved using Gaussian Quadrature scheme and is worked out using MATLAB as well. . MATLAB provides a good deal of commands and algorithms that can be used efficiently to elaborate the continuum of the formula to its extents. Graphs are plotted using different combinations of results and parameters involved in finding these results
Resumo:
Implementation of stable aeroelastic models with the ability to capture the complex features of Multi concept smartblades is a prime step in reducing the uncertainties that come along with blade dynamics. The numerical simulations of fluid structure interaction can thus be used to test a realistic scenarios comprising of full-scale blades at a reasonably low computational cost. A code which was a combination of two advanced numerical models was designed and was run with the help of paralell HPC supercomputer platform. The first model was based on a variation of dimensional reduction technique proposed by Hodges and Yu. This model was the one to record the structural response of heterogenous composite blades. This technique reduces the geometrical complexities of the heterogenous blade section into a stiffness matrix for an equivalent beam. This derived equivalent 1-D strain energy matrix is similar to the actual 3-D strain energy matrix in an asymptotic sense. As this 1-D matrix helps in accurately modeling the blade structure as a 1-D finite element problem, this substantially redues the computational effort and subsequently the computational cost that are required to model the structural dynamics at each step. Second model comprises of implementation of the Blade Element Momentum Theory. In this approach we map all the velocities and the forces with the help of orthogonal matrices that help in capturing the large deformations and the effects of rotations in calculating the aerodynamic forces. This ultimately helps us to take into account the complex flexo torsional deformations. In this thesis we have succesfully tested these computayinal tools developed by MTU’s research team lead by for the aero elastic analysis of wind-turbine blades. The validation in this thesis is majorly based on several experiments done on NREL-5MW blade, as this is widely accepted as a benchmark blade in the wind industry. Along with the use of this innovative model the internal blade structure was also changed to add up to the existing benefits of the already advanced numerical models.
Resumo:
To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.
Resumo:
In recent years, security of industrial control systems has been the main research focus due to the potential cyber-attacks that can impact the physical operations. As a result of these risks, there has been an urgent need to establish a stronger security protection against these threats. Conventional firewalls with stateful rules can be implemented in the critical cyberinfrastructure environment which might require constant updates. Despite the ongoing effort to maintain the rules, the protection mechanism does not restrict malicious data flows and it poses the greater risk of potential intrusion occurrence. The contributions of this thesis are motivated by the aforementioned issues which include a systematic investigation of attack-related scenarios within a substation network in a reliable sense. The proposed work is two-fold: (i) system architecture evaluation and (ii) construction of attack tree for a substation network. Cyber-system reliability remains one of the important factors in determining the system bottleneck for investment planning and maintenance. It determines the longevity of the system operational period with or without any disruption. First, a complete enumeration of existing implementation is exhaustively identified with existing communication architectures (bidirectional) and new ones with strictly unidirectional. A detailed modeling of the extended 10 system architectures has been evaluated. Next, attack tree modeling for potential substation threats is formulated. This quantifies the potential risks for possible attack scenarios within a network or from the external networks. The analytical models proposed in this thesis can serve as a fundamental development that can be further researched.