23 resultados para Fuel-cell Applications


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while achieving renewable electricity storage. Meanwhile, ORR that is often coupled in AEMFCs on the cathode was investigated on non-PGM electrocatalyst with comparable activity to commercial Pt/C. The electro-biorefinery process could be coupled with traditional biorefinery operation and will play a significant role in our energy and chemical landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) and 317 kW (425 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within an aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). The tests conducted with the engine rated at 365 hp used a 2007 DOC and CPF. The tests conducted with the engine rated at 425 hp used a 2010 DOC and 2007 CPF. Understanding the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Modeling the passive oxidation of accumulated PM in the CPF will lead to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine, and when the engine is operated at a higher power rating. A test procedure developed by Hutton et al. [1, 2] was modified to improve the ability to model the experimental data and provide additional insight into passively oxidized PM in a partially regenerated CPF. A test procedure was developed to allow PM oxidation rates by NO2 to be determined from engine test cell data. An experimental matrix consisting of CPF inlet temperatures from 250 to 450 °C with varying NOX/PM from 25 to 583and NO2/PM ratios from 5 to 240 was used. SME biodiesel was volumetrically blended with ULSD in 10% (B10) and 20% (B20) portions. This blended fuel was then used to evaluate the effect of biodiesel on passive oxidation rates. Four tests were performed with B10 and four tests with B20. Gathering data to determine the effect of fuel type (ULSD and biodiesel blends) on PM oxidation is the primary goal. The engine used for this testing was then configured to a higher power rating and one of the tests planned was performed. Additional testing is scheduled to take place with ULSD fuel to determine the affect the engine rating has on the PM oxidation. The experimental reaction rates during passive oxidation varied based upon the average CPF temperature, NO2 concentrations, and the NOX/PM ratios for each engine rating and with all fuels. The data analysis requires a high fidelity model that includes NO2 and thermal oxidation mechanisms and back diffusion to determine the details of the PM oxidation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents the research results of battery modeling and control for hybrid electric vehicles (HEV). The simulation study is conducted using plug-and-play powertrain and vehicle development software, Autonomie. The base vehicle model used for testing the performance of battery model and battery control strategy is the Prius MY04, a power-split hybrid electric vehicle model in Autonomie. To evaluate the battery performance for HEV applications, the Prius MY04 model and its powertrain energy flow in various vehicle operating modes are analyzed. The power outputs of the major powertrain components under different driving cycles are discussed with a focus on battery performance. The simulation results show that the vehicle fuel economy calculated by the Autonomie Prius MY04 model does not match very well with the official data provided by the department of energy (DOE). It is also found that the original battery model does not consider the impact of environmental temperature on battery cell capacities. To improve battery model, this study includes battery current loss on coulomb coefficient and the impact of environmental temperature on battery cell capacity in the model. In addition, voltage losses on both double layer effect and diffusion effect are included in the new battery model. The simulation results with new battery model show the reduced fuel economy error to the DOE data comparing with the original Autonomie Prius MY04 model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO has proven to be a multifunctional material with important nanotechnological applications. ZnO nanostructures can be grown in various forms such as nanowires, nanorods, nanobelts, nanocombs etc. In this work, ZnO nanostructures are grown in a double quartz tube configuration thermal Chemical Vapor Deposition (CVD) system. We focus on functionalized ZnO Nanostructures by controlling their structures and tuning their properties for various applications. The following topics have been investigated: 1. We have fabricated various ZnO nanostructures using a thermal CVD technique. The growth parameters were optimized and studied for different nanostructures. 2. We have studied the application of ZnO nanowires (ZnONWs) for field effect transistors (FETs). Unintentional n-type conductivity was observed in our FETs based on as-grown ZnO NWs. We have then shown for the first time that controlled incorporation of hydrogen into ZnO NWs can introduce p-type characters to the nanowires. We further found that the n-type behaviors remained, leading to the ambipolar behaviors of hydrogen incorporated ZnO NWs. Importantly, the detected p- and n- type behaviors are stable for longer than two years when devices were kept in ambient conditions. All these can be explained by an ab initio model of Zn vacancy-Hydrogen complexes, which can serve as the donor, acceptors, or green photoluminescence quencher, depend on the number of hydrogen atoms involved. 3. Next ZnONWs were tested for electron field emission. We focus on reducing the threshold field (Eth) of field emission from non-aligned ZnO NWs. As encouraged by our results on enhancing the conductivity of ZnO NWs by hydrogen annealing described in Chapter 3, we have studied the effect of hydrogen annealing for improving field emission behavior of our ZnO NWs. We found that optimally annealed ZnO NWs offered much lower threshold electric field and improved emission stability. We also studied field emission from ZnO NWs at moderate vacuum levels. We found that there exists a minimum Eth as we scale the threshold field with pressure. This behavior is explained by referring to Paschen’s law. 4. We have studied the application of ZnO nanostructures for solar energy harvesting. First, as-grown and (CdSe) ZnS QDs decorated ZnO NBs and ZnONWs were tested for photocurrent generation. All these nanostructures offered fast response time to solar radiation. The decoration of QDs decreases the stable current level produced by ZnONWs but increases that generated by NBs. It is possible that NBs offer more stable surfaces for the attachment of QDs. In addition, our results suggests that performance degradation of solar cells made by growing ZnO NWs on ITO is due to the increase in resistance of ITO after the high temperature growth process. Hydrogen annealing also improve the efficiency of the solar cells by decreasing the resistance of ITO. Due to the issues on ITO, we use Ni foil as the growth substrates. Performance of solar cells made by growing ZnO NWs on Ni foils degraded after Hydrogen annealing at both low (300 °C) and high (600 °C) temperatures since annealing passivates native defects in ZnONWs and thus reduce the absorption of visible spectra from our solar simulator. Decoration of QDs improves the efficiency of such solar cells by increasing absorption of light in the visible region. Using a better electrolyte than phosphate buffer solution (PBS) such as KI also improves the solar cell efficiency. 5. Finally, we have attempted p-type doping of ZnO NWs using various growth precursors including phosphorus pentoxide, sodium fluoride, and zinc fluoride. We have also attempted to create p-type carriers via introducing interstitial fluorine by annealing ZnO nanostructures in diluted fluorine gas. In brief, we are unable to reproduce the growth of reported p-type ZnO nanostructures. However; we have identified the window of temperature and duration of post-growth annealing of ZnO NWs in dilute fluorine gas which leads to suppression of native defects. This is the first experimental effort on post-growth annealing of ZnO NWs in dilute fluorine gas although this has been suggested by a recent theory for creating p-type semiconductors. In our experiments the defect band peak due to native defects is found to decrease by annealing at 300 °C for 10 – 30 minutes. One of the major future works will be to determine the type of charge carriers in our annealed ZnONWs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hardwoods comprise about half of the biomass of forestlands in North America and present many uses including economic, ecological and aesthetic functions. Forest trees rely on the genetic variation within tree populations to overcome the many biotic, abiotic, anthropogenic factors which are further worsened by climate change, that threaten their continued survival and functionality. To harness these inherent genetic variations of tree populations, informed knowledge of the genomic resources and techniques, which are currently lacking or very limited, are imperative for forest managers. The current study therefore aimed to develop genomic microsatellite markers for the leguminous tree species, honey locust, Gleditsia triacanthos L. and test their applicability in assessing genetic variation, estimation of gene flow patterns and identification of a full-sib mapping population. We also aimed to test the usefulness of already developed nuclear and gene-based microsatellite markers in delineation of species and taxonomic relationships between four of the taxonomically difficult Section Lobatae species (Quercus coccinea, Q. ellipsoidalis, Q. rubra and Q. velutina. We recorded 100% amplification of G. triacanthos genomic microsatellites developed using Illumina sequencing techniques in a panel of seven unrelated individuals with 14 of these showing high polymorphism and reproducibility. When characterized in 36 natural population samples, we recorded 20 alleles per locus with no indication for null alleles at 13 of the 14 microsatellites. This is the first report of genomic microsatellites for this species. Honey locust trees occur in fragmented populations of abandoned farmlands and pastures and is described as essentially dioecious. Pollen dispersal if the main source of gene flow within and between populations with the ability to offset the effects of random genetic drift. Factors known to influence gene include fragmentation and degree of isolation, which make the patterns gene flow in fragmented populations of honey locust a necessity for their sustainable management. In this follow-up study, we used a subset of nine of the 14 developed gSSRs to estimate gene flow and identify a full-sib mapping population in two isolated fragments of honey locust. Our analyses indicated that the majority of the seedlings (65-100% - at both strict and relaxed assignment thresholds) were sired by pollen from outside the two fragment populations. Only one selfing event was recorded confirming the functional dioeciousness of honey locust and that the seed parents are almost completely outcrossed. From the Butternut Valley, TN population, pollen donor genotypes were reconstructed and used in paternity assignment analyses to identify a relatively large full-sib family comprised of 149 individuals, proving the usefulness of isolated forest fragments in identification of full-sib families. In the Ames Plantation stand, contemporary pollen dispersal followed a fat-tailed exponential-power distribution, an indication of effective gene flow. Our estimate of δ was 4,282.28 m, suggesting that insect pollinators of honey locust disperse pollen over very long distances. The high proportion of pollen influx into our sampled population implies that our fragment population forms part of a large effectively reproducing population. The high tendency of oak species to hybridize while still maintaining their species identity make it difficult to resolve their taxonomic relationships. Oaks of the section Lobatae are famous in this regard and remain unresolved at both morphological and genetic markers. We applied 28 microsatellite markers including outlier loci with potential roles in reproductive isolation and adaptive divergence between species to natural populations of four known interfertile red oaks, Q. coccinea, Q. ellpsoidalis, Q. rubra and Q. velutina. To better resolve the taxonomic relationships in this difficult clade, we assigned individual samples to species, identified hybrids and introgressive forms and reconstructed phylogenetic relationships among the four species after exclusion of genetically intermediate individuals. Genetic assignment analyses identified four distinct species clusters, with Q. rubra most differentiated from the three other species, but also with a comparatively large number of misclassified individuals (7.14%), hybrids (7.14%) and introgressive forms (18.83%) between Q. ellipsoidalis and Q. velutina. After the exclusion of genetically intermediate individuals, Q. ellipsoidalis grouped as sister species to the largely parapatric Q. coccinea with high bootstrap support (91 %). Genetically intermediate forms in a mixed species stand were located proximate to both potential parental species, which supports recent hybridization of Q. velutina with both Q. ellipsoidalis and Q. rubra. Analyses of genome-wide patterns of interspecific differentiation can provide a better understanding of speciation processes and taxonomic relationships in this taxonomically difficult group of red oak species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest - hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues - according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% oftheoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure species results. Chapter 4 is an evaluation of the potential for producing Trichoderma reesei cellulose hydrolases in the Kluyveromyces lactis yeast expression system. The exoglucanases Cel6A and Cel7A, and the endoglucanase Cel7B were inserted separately into the K. lactis and the enzymes were analyzed for activity on various substrates. Recombinant Cel7B was found to be active on carboxymethyl cellulose and Avicel powdered cellulose substrates. Recombinant Cel6A was also found to be active on Avicel. Recombinant Cel7A was produced, but no enzymatic activity was detected on any substrate. Chapter 5 presents a new method for enzyme improvement studies using enzyme co-expression and yeast growth rate measurements as a potential high-throughput expression and screening system in K. lactis yeast. Two different K. lactis strains were evaluated for their usefulness in growth screening studies, one wild-type strain and one strain which has had the main galactose metabolic pathway disabled. Sequential transformation and co-expression of the exoglucanase Cel6A and endoglucanase Cel7B was performed, and improved hydrolysis rates on Avicel were detectable in the cell culture supernatant. Future work should focus on hydrolysis of natural substrates, developing the growth screening method, and utilizing the K. lactis expression system for directed evolution of enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene, which is a two-dimensional carbon material, exhibits unique properties that promise its potential applications in photovoltaic devices. Dye-sensitized solar cell (DSSC) is a representative of the third generation photovoltaic devices. Therefore, it is important to synthesize graphene with special structures, which possess excellent properties for dye-sensitized solar cells. This dissertation research was focused on (1) the effect of oxygen content on the structure of graphite oxide, (2) the stability of graphene oxide solution, (3) the application of graphene precipitate from graphene oxide solution as counter electrode for DSSCs, (4) the development of a novel synthesis method for the three-dimensional graphene with honeycomb-like structure, and (5) the exploration of honeycomb structured graphene (HSG) as counter electrodes for DSSCs. Graphite oxide is a crucial precursor to synthesize graphene sheets via chemical exfoliation method. The relationship between the oxygen content and the structures of graphite oxides was still not explored. In this research, the oxygen content of graphite oxide is tuned by changing the oxidation time and the effect of oxygen content on the structure of graphite oxide was evaluated. It has been found that the saturated ratio of oxygen to carbon is 0.47. The types of functional groups in graphite oxides, which are epoxy, hydroxyl, and carboxylgroups, are independent of oxygen content. However, the interplanar space and BET surface area of graphite oxide linearly increases with increasing O/C ratio. Graphene oxide (GO) can easily dissolve in water to form a stable homogeneous solution, which can be used to fabricate graphene films and graphene based composites. This work is the first research to evaluate the stability of graphene oxide solution. It has been found that the introduction of strong electrolytes (HCl, LiOH, LiCl) into GO solution can cause GO precipitation. This indicates that the electrostatic repulsion plays a critical role in stabilizing aqueous GO solution. Furthermore, the HCl-induced GO precipitation is a feasible approach to deposit GO sheets on a substrate as a Pt-free counter electrode for a dye-sensitized solar cell (DSSC), which exhibited 1.65% of power conversion efficiency. To explore broad and practical applications, large-scale synthesis with controllable integration of individual graphene sheets is essential. A novel strategy for the synthesis of graphene sheets with three-dimensional (3D) Honeycomb-like structure has been invented in this project based on a simple and novel chemical reaction (Li2O and CO to graphene and Li2CO3). The simultaneous formation of Li2CO3 with graphene not only can isolate graphene sheets from each other to prevent graphite formation during the process, but also determine the locally curved shape of graphene sheets. After removing Li2CO3, 3D graphene sheets with a honeycomb-like structure were obtained. This would be the first approach to synthesize 3D graphene sheets with a controllable shape. Furthermore, it has been demonstrated that the 3D Honeycomb-Structured Graphene (HSG) possesses excellent electrical conductivity and high catalytic activity. As a result, DSSCs with HSG counter electrodes exhibit energy conversion efficiency as high as 7.8%, which is comparable to that of an expensive noble Pt electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

“Seeing is believing” the proverb well suits for fluorescent imaging probes. Since we can selectively and sensitively visualize small biomolecules, organelles such as lysosomes, neutral molecules, metal ions, anions through cellular imaging, fluorescent probes can help shed light on the physiological and pathophysiological path ways. Since these biomolecules are produced in low concentrations in the biochemical pathways, general analytical techniques either fail to detect or are not sensitive enough to differentiate the relative concentrations. During my Ph.D. study, I exploited synthetic organic techniques to design and synthesize fluorescent probes with desirable properties such as high water solubility, high sensitivity and with varying fluorescent quantum yields. I synthesized a highly water soluble BOIDPY-based turn-on fluorescent probe for endogenous nitric oxide. I also synthesized a series of cell membrane permeable near infrared (NIR) pH activatable fluorescent probes for lysosomal pH sensing. Fluorescent dyes are molecular tools for designing fluorescent bio imaging probes. This prompted me to design and synthesize a hybrid fluorescent dye with a functionalizable chlorine atom and tested the chlorine re-activity for fluorescent probe design. Carbohydrate and protein interactions are key for many biological processes, such as viral and bacterial infections, cell recognition and adhesion, and immune response. Among several analytical techniques aimed to study these interactions, electrochemical bio sensing is more efficient due to its low cost, ease of operation, and possibility for miniaturization. During my Ph.D., I synthesized mannose bearing aniline molecule which is successfully tested as electrochemical bio sensor. A Ferrocene-mannose conjugate with an anchoring group is synthesized, which can be used as a potential electrochemical biosensor.