24 resultados para Illinois and Michigan Canal.
Resumo:
Through comparative analysis of the immigrant labor forces at work in iron mining in northern Minnesota, coal mining in Illinois, and steel milling in the Calumet region of Chicago and Gary, this paper addresses the forms of social distance separating and marginalizing new immigrants from American society and trade unionism that existed in 1914, the year that marked the end point of mass immigration from Eastern and Southern Europe. The “new immigration” was a labor migration that congregated its subjects overwhelmingly in what were called "unskilled" or "semi-skilled" forms of labor. Skilled work was largely, with certain variations, the preserve of "American" or old immigrant workers. This labor gulf separating new immigrants and American workers was hardened by a spatial separateness. New immigrants often lived in what have been called industrial villages—the mining town or location, the factory neighborhood— striking in their isolation and insularity from mainstream society. This separateness and insularity became a major preoccupation for corporate managers, Progressive reformers, and for American trade unions as new immigrants began to engage in major labor struggles leading up to 1914. But among the three industries, only the union of coal miners, the United Mine Workers, enjoyed success in organizing the new immigrants. In the steel mills and the iron mines, the unions were either rooted out or failed to gain a foothold at all. The explanation for these differences is to be found in the different forms of industrial development among the industries studied.
Resumo:
This dissertation examines the global technological and environmental history of copper smelting and the conflict that developed between historic preservation and environmental remediation at major copper smelting sites in the United States after their productive periods ended. Part I of the dissertation is a synthetic overview of the history of copper smelting and its environmental impact. After reviewing the basic metallurgy of copper ores, the dissertation contains successive chapters on the history of copper smelting to 1640, culminating in the so-called German, or Continental, processing system; on the emergence of the rival Welsh system during the British industrial revolution; and on the growth of American dominance in copper production the late 19th and early 20th centuries. The latter chapter focuses, in particular, on three of the most important early American copper districts: Michigan’s Keweenaw Peninsula, Tennessee’s Copper Basin, and Butte-Anaconda, Montana. As these three districts went into decline and ultimately out of production, they left a rich industrial heritage and significant waste and pollution problems generated by increasingly more sophisticated technologies capable of commercially processing steadily growing volumes of decreasingly rich ores. Part II of the dissertation looks at the conflict between historic preservation and environmental remediation that emerged locally and nationally in copper districts as they went into decline and eventually ceased production. Locally, former copper mining communities often split between those who wished to commemorate a region’s past importance and develop heritage tourism, and local developers who wished to clear up and clean out old industrial sites for other purposes. Nationally, Congress passed laws in the 1960s and 1970s mandating the preservation of historical resources (National Historic Preservation Act) and laws mandating the cleanup of contaminated landscapes (CERCLA, or Superfund), objectives sometimes in conflict – especially in the case of copper smelting sites. The dissertation devotes individual chapters to the conflicts that developed between environmental remediation, particularly involving the Environmental Protection Agency and the heritage movement in the Tennessee, Montana, and Michigan copper districts. A concluding chapter provides a broad model to illustrate the relationship between industrial decline, federal environmental remediation activities, and the growth of heritage consciousness in former copper mining and smelting areas, analyzes why the outcome varied in the three areas, and suggests methods for dealing with heritage-remediation issues to minimize conflict and maximize heritage preservation.
Resumo:
As global climate continues to change, it becomes more important to understand possible feedbacks from soils to the climate system. This dissertation focuses on soil microbial community responses to climate change factors in northern hardwood forests. Two soil warming experiments at Harvard Forest in Massachusetts, and a climate change manipulation experiment with both elevated temperature and increased moisture inputs in Michigan were sampled. The hyphal in-growth bag method was to understand how soil fungal biomass and respiration respond to climate change factors. Our results from phospholipid fatty acid (PLFA) analyses suggest that the hyphal in-growth bag method allows relatively pure samples of fungal hyphae to be partitioned from bacteria in the soil. The contribution of fungal hyphal respiration to soil respiration was examined in climate change manipulation experiments in Massachusetts and Michigan. The Harvard Forest soil warming experiments in Massachusetts are long-term studies with 8 and 18 years of +5 °C warming treatment. Hyphal respiration and biomass production tended to decrease with soil warming at Harvard Forest. This suggests that fungal hyphae adjust to higher temperatures by decreasing the amount of carbon respired and the amount of carbon stored in biomass. The Ford Forestry Center experiment in Michigan has a 2 x 2 fully factorial design with warming (+4-5 °C) and moisture addition (+30% average ambient growing season precipitation). This experiment was used to examine hyphal growth and respiration of arbuscular mycorrhizal fungi (AMF), soil enzymatic capacity, microbial biomass and microbial community structure in the soil over two years of experimental treatment. Results from the hyphal in-growth bag study indicate that AMF hyphal growth and respiration respond negatively to drought. Soil enzyme activities tend to be higher in heated versus unheated soils. There were significant temporal variations in enzyme activity and microbial biomass estimates. When microbial biomass was estimated using chloroform fumigation extractions there were no differences between experimental treatments and the control. When PLFA analyses were used to estimate microbial biomass we found that biomass responds negatively to higher temperatures and positively to moisture addition. This pattern was present for both bacteria and fungi. More information on the quality and composition of the organic matter and nutrients in soils from climate change manipulation experiments will allow us to gain a more thorough understanding of the mechanisms driving the patterns reported here. The information presented here will improve current soil carbon and nitrogen cycling models.
Resumo:
Finnish North American labor contributions and involvement in strikes such as the 1913-14 Michigan Copper Strike are being restored to the historical record and even commemorated; yet some Finnish American communities’ labor history still goes untold. We contend that in the case of DeKalb, Illinois, the Finnish American labor and strike history has been, in part, overshadowed in contemporary remembrance by the city’s promotion of traditional history and commemoration focused on the barbed wire barons. Local Finnish American labor involvement and participation in strikes appears to have been marginalized in favor of a subsequent historical narrative surrounding the capitalist entrepreneurship of elites. However, counter memories of labor struggles may be lost for a variety of reasons. External and internal forces make it difficult for marginalized groups to offer alternatives to the construction of collective memories that exclude them. These forces include, but are not limited to gradual assimilation into dominant culture, internal conflict within social movements, and fear of, or experience with, governmental repression. In our archival research, surveys and interviews with 2nd and 3rd generation Finnish American residents reveal the many forces of “forgetting” that can influence the counter memory of Finnish American labor history in certain communities.
Resumo:
At the dawn of the 20th century, the burgeoning influence of the Finnish immigrant socialist-unionist movement collided with the authoritative, conservative nature of the Suomi Synod. While the Synod, headquartered in Hancock, Michigan, was attempting to recreate the Finnish state church in America, the quickly radicalizing immigrant socialist-unionist movement was attempting to convert the masses to a materialist message of class struggle manifested by then current conditions in Michigan’s Copper Country and industrial America. The most persuasive voice of class struggle for immigrant Finns at this time was the Finnish-language newspaper Työmies (The Workingman) published in Hancock. Caustic editorials on religion, critical examinations of Christian orthodoxy in translations of Marx and Kropotkin, and ribald cartoons lampooning members of the Synod clergy and laity all demonstrated the overwrought interactions between Työmies and the Synod. This paper will highlight these tense interactions through analysis of doctrine, ideology, and imagery by delving into the primary historical record to reveal the vast gulf between two of the major institutions in early 20th century Finnish immigrant social life.
Resumo:
Labor Historian Marc Karson has singled out “labor priest” Peter E. Dietz as one of the strongest proponents for the active implementation of the Catholic Church’s 1890’s labor encyclical Rerum Novarum in the daily practice of American Catholics. Biographer Sister Mary Harrita Fox pointed out that in his work, Dietz “was particularly concerned over the role of the church in the copper strike in Upper Michigan.” This “particular concern” should be noted since the 1913 strike was one of the only disputes where Dietz went out of his way to visit and become actively involved. Why the keen interest? This presentation will review the impetus for the huge effort which brought Peter E. Dietz to the Copper Country and solely to that dispute alone, the resulting visit and report that he made concerning the strike, the important role he believed this visit and stance in the Copper Strike had in the future of the Church’s relationship to the US labor movement. The presentation will look at both what Dietz thought would occur as a result of his 1913 trip to the Keweenaw and what actually happened in this pivotal pre-World War One era event. The paper will put Father Peter E. Dietz and the Catholic Church into the larger frame of how religion has been viewed within the history of the Strike.
Resumo:
In 1938, a young folk music collector named Alan Lomax—destined to become one of the legendary folklorists of the 20th century recorded Michigan’s richly varied folk music traditions for the Archive of American Folk-Song at the Library of Congress. Michigan in the 1930s was experiencing a golden age of folksong collecting, as local folklorists mined the trove of ballads remembered by aging lumbermen and Great Lakes schoonermen. In addition to the ballads of these north woods singers, Lomax recorded a vibrant mix of ethnic music from Detroit to the western Upper Peninsula. The multimedia performance event Folksongs from Michigan-i-o combines live performance with historic images, color movie footage, and recorded sound from the Great Depression. Some of these materials haven’t been heard or seen by the general public for more than seven decades. The traveling exhibition Michigan Folksong Legacy: Grand Discoveries from the Great Depression brings Alan Lomax’s 1938 field trip to life through words, song lyrics, photographs, and sound recordings. Ten interpretive banners explore themes and each panel contains a QR code that links to related sound recordings from the Alan Lomax Collection at the American Folklife Center, Library of Congress.
Resumo:
In 1938, a young folk music collector named Alan Lomax—destined to become one of the legendary folklorists of the 20th century recorded Michigan’s richly varied folk music traditions for the Archive of American Folk-Song at the Library of Congress. Michigan in the 1930s was experiencing a golden age of folksong collecting, as local folklorists mined the trove of ballads remembered by aging lumbermen and Great Lakes schoonermen. In addition to the ballads of these north woods singers, Lomax recorded a vibrant mix of ethnic music from Detroit to the western Upper Peninsula. The multimedia performance event Folksongs from Michigan-i-o combines live performance with historic images, color movie footage, and recorded sound from the Great Depression. Some of these materials haven’t been heard or seen by the general public for more than seven decades. The traveling exhibition Michigan Folksong Legacy: Grand Discoveries from the Great Depression brings Alan Lomax’s 1938 field trip to life through words, song lyrics, photographs, and sound recordings. Ten interpretive banners explore themes and each panel contains a QR code that links to related sound recordings from the Alan Lomax Collection at the American Folklife Center, Library of Congress.
Resumo:
In 1938, a young folk music collector named Alan Lomax—destined to become one of the legendary folklorists of the 20th century recorded Michigan’s richly varied folk music traditions for the Archive of American Folk-Song at the Library of Congress. Michigan in the 1930s was experiencing a golden age of folksong collecting, as local folklorists mined the trove of ballads remembered by aging lumbermen and Great Lakes schoonermen. In addition to the ballads of these north woods singers, Lomax recorded a vibrant mix of ethnic music from Detroit to the western Upper Peninsula. The multimedia performance event Folksongs from Michigan-i-o combines live performance with historic images, color movie footage, and recorded sound from the Great Depression. Some of these materials haven’t been heard or seen by the general public for more than seven decades. The traveling exhibition Michigan Folksong Legacy: Grand Discoveries from the Great Depression brings Alan Lomax’s 1938 field trip to life through words, song lyrics, photographs, and sound recordings. Ten interpretive banners explore themes and each panel contains a QR code that links to related sound recordings from the Alan Lomax Collection at the American Folklife Center, Library of Congress.
Resumo:
Forested wetlands throughout the world are valuable habitats; especially in relatively species-poor northern regions, they can be considered biological hotspots. Unfortunately, these areas have been degraded and destroyed. In recent years, however, the biological importance of wetlands has been increasingly recognized, resulting in the desire to restore disturbed habitats or create in place of destroyed ones. Restoration work is taking place across the globe in a diversity of wetland types, and research must be conducted to determine successful techniques. As a result, two studies of the effects of wetland restoration and creation were conducted in forested wetlands in northern Michigan and southern Finland. In North America, northern white-cedar wetlands have been declining in area, despite attempts to regenerate them. Improved methods for successfully establishing northern white-cedar are needed; as a result, the target of the first study was to determine if creating microtopography could be beneficial for white-cedar recruitment and growth. In northern Europe, spruce swamp forests have become a threatened ecosystem due to extensive drainage for forestry. As part of the restoration of these habitats, i.e. rewetting through ditch blocking, Sphagnum mosses are considered to be a critical element to re-establish, and an in-depth analysis of how Sphagnum is responding to restoration in spruce swamp forests has not been previously done. As a result, the aim of the second study was to investigate the ecophysiological functioning of Sphagnum and feather mosses across a gradient of pristine, drained, and restored boreal spruce swamp forests.
Resumo:
Heavy metal-rich copper mine tailings, called stamp sands, were dumped by mining companies directly into streams and along the Lake Superior shoreline, degrading Keweenaw Peninsula waterways. One of the largest disposal sites is near Gay, Michigan, where tailings have been moved along the shoreline by currents since mining ceased. As a result, the smallest sand particles have been washed into deeper water and are filling the interstitial spaces of Buffalo Reef, a critical lake trout spawning site. This research is the first to investigate if stamp sand is detrimental to survival and early development of eggs and larvae of lake sturgeon, lake trout, and Northern leopard frogs, and also examines if the presence of stamp sands influences substrate selection of earthworms. This study found that stamp sand had significantly larger mean particle sizes and irregular shapes compared to natural sand, and earthworms show a strong preference for natural substrate over any combination that included stamp sand. Additionally, copper analysis (Cu2+) of surface water over stamp sand and natural sand showed concentrations were significantly higher in stamp sand surface water (100 μg/L) compared to natural sand surface water (10 μg/L). Frog embryos had similar hatch success over both types of sand, but tadpoles reared over natural sand grew faster and had higher survival rates. Eggs of lake sturgeon showed similar hatch success and development over natural vs. stamp sand over 17 days, while lake trout eggs hatched earlier and developed faster when incubated over stamp sand, yet showed similar development over a 163 day period. Copper from stamp sand appears to impact amphibians more than fish species in this study. These results will help determine what impact stamp sand has on organisms found throughout the Keweenaw Peninsula which encounter the material at some point in their life history.
Resumo:
The Michigan Basin is located in the upper Midwest region of the United States and is centered geographically over the Lower Peninsula of Michigan. It is filled primarily with Paleozoic carbonates and clastics, overlying Precambrian basement rocks and covered by Pleistocene glacial drift. In Michigan, more than 46,000 wells have been drilled in the basin, many producing significant quantities of oil and gas since the 1920s in addition to providing a wealth of data for subsurface visualization. Well log tomography, formerly log-curve amplitude slicing, is a visualization method recently developed at Michigan Technological University to correlate subsurface data by utilizing the high vertical resolution of well log curves. The well log tomography method was first successfully applied to the Middle Devonian Traverse Group within the Michigan Basin using gamma ray log curves. The purpose of this study is to prepare a digital data set for the Middle Devonian Dundee and Rogers City Limestones, apply the well log tomography method to this data and from this application, interpret paleogeographic trends in the natural radioactivity. Both the Dundee and Rogers City intervals directly underlie the Traverse Group and combined are the most prolific reservoir within the Michigan Basin. Differences between this study and the Traverse Group include increased well control and “slicing” of a more uniform lithology. Gamma ray log curves for the Dundee and Rogers City Limestones were obtained from 295 vertical wells distributed over the Lower Peninsula of Michigan, converted to Log ASCII Standard files, and input into the well log tomography program. The “slicing” contour results indicate that during the formation of the Dundee and Rogers City intervals, carbonates and evaporites with low natural radioactive signatures on gamma ray logs were deposited. This contrasts the higher gamma ray amplitudes from siliciclastic deltas that cyclically entered the basin during Traverse Group deposition. Additionally, a subtle north-south, low natural radioactive trend in the center of the basin may correlate with previously published Dundee facies tracts. Prominent trends associated with the distribution of limestone and dolomite are not observed because the regional range of gamma ray values for both carbonates are equivalent in the Michigan Basin and additional log curves are needed to separate these lithologies.
Analysis of spring break-up and its effects on a biomass feedstock supply chain in northern Michigan
Resumo:
Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and concerns over greenhouse gas emissions and energy security. The overall cost of biomass energy generation is primarily related to biomass harvesting activity, transportation, and storage. With a commercial-scale cellulosic ethanol processing facility in Kinross Township of Chippewa County, Michigan about to be built, models including a simulation model and an optimization model have been developed to provide decision support for the facility. Both models track cost, emissions and energy consumption. While the optimization model provides guidance for a long-term strategic plan, the simulation model aims to present detailed output for specified operational scenarios over an annual period. Most importantly, the simulation model considers the uncertainty of spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is important because it will impact the feasibility of harvesting activity and the time duration of transportation restrictions, which significantly changes the availability of feedstock for the processing facility. This thesis focuses on the statistical model of spring break-up used in the simulation model. Spring break-up timing depends on various factors, including temperature, road conditions and soil type, as well as individual decision making processes at the county level. The spring break-up model, based on the historical spring break-up data from 27 counties over the period of 2002-2010, starts by specifying the probability distribution of a particular county’s spring break-up start day and end day, and then relates the spring break-up timing of the other counties in the harvesting zone to the first county. In order to estimate the dependence relationship between counties, regression analyses, including standard linear regression and reduced major axis regression, are conducted. Using realizations (scenarios) of spring break-up generated by the statistical spring breakup model, the simulation model is able to probabilistically evaluate different harvesting and transportation plans to help the bio-fuel facility select the most effective strategy. For early spring break-up, which usually indicates a longer than average break-up period, more log storage is required, total cost increases, and the probability of plant closure increases. The risk of plant closure may be partially offset through increased use of rail transportation, which is not subject to spring break-up restrictions. However, rail availability and rail yard storage may then become limiting factors in the supply chain. Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the reliability of providing feedstock to the bio-fuel processing facility.
Resumo:
The primary challenge in groundwater and contaminant transport modeling is obtaining the data needed for constructing, calibrating and testing the models. Large amounts of data are necessary for describing the hydrostratigraphy in areas with complex geology. Increasingly states are making spatial data available that can be used for input to groundwater flow models. The appropriateness of this data for large-scale flow systems has not been tested. This study focuses on modeling a plume of 1,4-dioxane in a heterogeneous aquifer system in Scio Township, Washtenaw County, Michigan. The analysis consisted of: (1) characterization of hydrogeology of the area and construction of a conceptual model based on publicly available spatial data, (2) development and calibration of a regional flow model for the site, (3) conversion of the regional model to a more highly resolved local model, (4) simulation of the dioxane plume, and (5) evaluation of the model's ability to simulate field data and estimation of the possible dioxane sources and subsequent migration until maximum concentrations are at or below the Michigan Department of Environmental Quality's residential cleanup standard for groundwater (85 ppb). MODFLOW-2000 and MT3D programs were utilized to simulate the groundwater flow and the development and movement of the 1, 4-dioxane plume, respectively. MODFLOW simulates transient groundwater flow in a quasi-3-dimensional sense, subject to a variety of boundary conditions that can simulate recharge, pumping, and surface-/groundwater interactions. MT3D simulates solute advection with groundwater flow (using the flow solution from MODFLOW), dispersion, source/sink mixing, and chemical reaction of contaminants. This modeling approach was successful at simulating the groundwater flows by calibrating recharge and hydraulic conductivities. The plume transport was adequately simulated using literature dispersivity and sorption coefficients, although the plume geometries were not well constrained.
Resumo:
Approximately one-fourth of the non-industrial private forestland (NIPF) owners in the state of Michigan, who collectively own approximately 50% of the private forested land, have conducted commercial timber harvest in recent years. Previous studies indicated that NIPFs preferred to manage their forest for a sustained yield of high-quality timber, but were limited to even-aged regeneration treatments or conversion for uneven-aged silviculture due to previous cuttings. Improved knowledge about NIPF’s intentions and forest management behavior could be useful for successful implementation of sustained yield management. This study’s objective was to identify more active NIPF’s attitudes towards timber management, their forest management practices and whether their forest management behavior leads or leads not to q management for sustained yield. Active NIPF’s intentions to harvest timber for biofuels and its suitability with NIPF’s forest management behavior will be discussed. Phone interviews of 30 NIPFs who have experience with commercial timber harvests were conducted between August and October 2011. All interviews were recorded, transcribed, and analyzed for identifying NIPF’s motivations, attitudes, forest management behavior and forestry related knowledge. Interviewees, whether consciously or not, tended to manage their land for a sustained yield and they would be willing to harvest timber for biofuels facility as long as it benefits landowners management goals.