2 resultados para testing, test, php

em Collection Of Biostatistics Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last few years have seen the advent of high-throughput technologies to analyze various properties of the transcriptome and proteome of several organisms. The congruency of these different data sources, or lack thereof, can shed light on the mechanisms that govern cellular function. A central challenge for bioinformatics research is to develop a unified framework for combining the multiple sources of functional genomics information and testing associations between them, thus obtaining a robust and integrated view of the underlying biology. We present a graph theoretic approach to test the significance of the association between multiple disparate sources of functional genomics data by proposing two statistical tests, namely edge permutation and node label permutation tests. We demonstrate the use of the proposed tests by finding significant association between a Gene Ontology-derived "predictome" and data obtained from mRNA expression and phenotypic experiments for Saccharomyces cerevisiae. Moreover, we employ the graph theoretic framework to recast a surprising discrepancy presented in Giaever et al. (2002) between gene expression and knockout phenotype, using expression data from a different set of experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique which is commonly used to quantify changes in blood oxygenation and flow coupled to neuronal activation. One of the primary goals of fMRI studies is to identify localized brain regions where neuronal activation levels vary between groups. Single voxel t-tests have been commonly used to determine whether activation related to the protocol differs across groups. Due to the generally limited number of subjects within each study, accurate estimation of variance at each voxel is difficult. Thus, combining information across voxels in the statistical analysis of fMRI data is desirable in order to improve efficiency. Here we construct a hierarchical model and apply an Empirical Bayes framework on the analysis of group fMRI data, employing techniques used in high throughput genomic studies. The key idea is to shrink residual variances by combining information across voxels, and subsequently to construct an improved test statistic in lieu of the classical t-statistic. This hierarchical model results in a shrinkage of voxel-wise residual sample variances towards a common value. The shrunken estimator for voxelspecific variance components on the group analyses outperforms the classical residual error estimator in terms of mean squared error. Moreover, the shrunken test-statistic decreases false positive rate when testing differences in brain contrast maps across a wide range of simulation studies. This methodology was also applied to experimental data regarding a cognitive activation task.