1 resultado para super-dense computation
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (2)
- Aston University Research Archive (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (24)
- Biblioteca Digital Loyola - Universidad de Deusto (33)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (33)
- Bibloteca do Senado Federal do Brasil (117)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (52)
- Bucknell University Digital Commons - Pensilvania - USA (5)
- CentAUR: Central Archive University of Reading - UK (47)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (11)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (44)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (28)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (30)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (114)
- Instituto Politécnico do Porto, Portugal (16)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (6)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (4)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (15)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (6)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (8)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (83)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- Scielo Saúde Pública - SP (11)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (54)
- Universidade do Minho (5)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Lausanne, Switzerland (33)
- Université de Montréal, Canada (11)
- University of Connecticut - USA (2)
- University of Queensland eSpace - Australia (29)
- University of Southampton, United Kingdom (5)
Resumo:
Clustered data analysis is characterized by the need to describe both systematic variation in a mean model and cluster-dependent random variation in an association model. Marginalized multilevel models embrace the robustness and interpretations of a marginal mean model, while retaining the likelihood inference capabilities and flexible dependence structures of a conditional association model. Although there has been increasing recognition of the attractiveness of marginalized multilevel models, there has been a gap in their practical application arising from a lack of readily available estimation procedures. We extend the marginalized multilevel model to allow for nonlinear functions in both the mean and association aspects. We then formulate marginal models through conditional specifications to facilitate estimation with mixed model computational solutions already in place. We illustrate this approach on a cerebrovascular deficiency crossover trial.