8 resultados para spatio-temporal dynamics
em Collection Of Biostatistics Research Archive
Resumo:
The AEGISS (Ascertainment and Enhancement of Gastrointestinal Infection Surveillance and Statistics) project aims to use spatio-temporal statistical methods to identify anomalies in the space-time distribution of non-specific, gastrointestinal infections in the UK, using the Southampton area in southern England as a test-case. In this paper, we use the AEGISS project to illustrate how spatio-temporal point process methodology can be used in the development of a rapid-response, spatial surveillance system. Current surveillance of gastroenteric disease in the UK relies on general practitioners reporting cases of suspected food-poisoning through a statutory notification scheme, voluntary laboratory reports of the isolation of gastrointestinal pathogens and standard reports of general outbreaks of infectious intestinal disease by public health and environmental health authorities. However, most statutory notifications are made only after a laboratory reports the isolation of a gastrointestinal pathogen. As a result, detection is delayed and the ability to react to an emerging outbreak is reduced. For more detailed discussion, see Diggle et al. (2003). A new and potentially valuable source of data on the incidence of non-specific gastro-enteric infections in the UK is NHS Direct, a 24-hour phone-in clinical advice service. NHS Direct data are less likely than reports by general practitioners to suffer from spatially and temporally localized inconsistencies in reporting rates. Also, reporting delays by patients are likely to be reduced, as no appointments are needed. Against this, NHS Direct data sacrifice specificity. Each call to NHS Direct is classified only according to the general pattern of reported symptoms (Cooper et al, 2003). The current paper focuses on the use of spatio-temporal statistical analysis for early detection of unexplained variation in the spatio-temporal incidence of non-specific gastroenteric symptoms, as reported to NHS Direct. Section 2 describes our statistical formulation of this problem, the nature of the available data and our approach to predictive inference. Section 3 describes the stochastic model. Section 4 gives the results of fitting the model to NHS Direct data. Section 5 shows how the model is used for spatio-temporal prediction. The paper concludes with a short discussion.
Resumo:
We assess the strength of association between aerosol optical depth (AOD) retrievals from the GOES Aerosol/Smoke Product (GASP) and ground-level fine particulate matter (PM2.5) to assess AOD as a proxy for PM2.5 in the United States. GASP AOD is retrieved from a geostationary platform and therefore provides dense temporal coverage with half-hourly observations every day, in contrast to once per day snapshots from polar-orbiting satellites. However, GASP AOD is based on a less-sophisticated instrument and retrieval algorithm. We find that correlations between GASP AOD and PM2.5 over time at fixed locations are reasonably high, except in the winter and in the western U.S. Correlations over space at fixed times are lower. Simple averaging over time actually reduces correlations over space dramatically, but statistical calibration allows averaging over time that produces strong correlations. These results and the data density of GASP AOD highlight its potential to help improve exposure estimates for epidemiological analyses. On average 40% of days in a month have a GASP AOD retrieval compared to 14% for MODIS and 4% for MISR. Furthermore, GASP AOD has been retrieved since November 1994, providing the possibility of a long-term record that pre-dates the availability of most PM2.5 monitoring data and other satellite instruments.
Resumo:
Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately
Resumo:
The last two decades have seen intense scientific and regulatory interest in the health effects of particulate matter (PM). Influential epidemiological studies that characterize chronic exposure of individuals rely on monitoring data that are sparse in space and time, so they often assign the same exposure to participants in large geographic areas and across time. We estimate monthly PM during 1988-2002 in a large spatial domain for use in studying health effects in the Nurses' Health Study. We develop a conceptually simple spatio-temporal model that uses a rich set of covariates. The model is used to estimate concentrations of PM10 for the full time period and PM2.5 for a subset of the period. For the earlier part of the period, 1988-1998, few PM2.5 monitors were operating, so we develop a simple extension to the model that represents PM2.5 conditionally on PM10 model predictions. In the epidemiological analysis, model predictions of PM10 are more strongly associated with health effects than when using simpler approaches to estimate exposure. Our modeling approach supports the application in estimating both fine-scale and large-scale spatial heterogeneity and capturing space-time interaction through the use of monthly-varying spatial surfaces. At the same time, the model is computationally feasible, implementable with standard software, and readily understandable to the scientific audience. Despite simplifying assumptions, the model has good predictive performance and uncertainty characterization.
Resumo:
Recent research highlights the promise of remotely-sensed aerosol optical depth (AOD) as a proxy for ground-level PM2.5. Particular interest lies in the information on spatial heterogeneity potentially provided by AOD, with important application to estimating and monitoring pollution exposure for public health purposes. Given the temporal and spatio-temporal correlations reported between AOD and PM2.5 , it is tempting to interpret the spatial patterns in AOD as reflecting patterns in PM2.5 . Here we find only limited spatial associations of AOD from three satellite retrievals with PM2.5 over the eastern U.S. at the daily and yearly levels in 2004. We then use statistical modeling to show that the patterns in monthly average AOD poorly reflect patterns in PM2.5 because of systematic, spatially-correlated error in AOD as a proxy for PM2.5 . Furthermore, when we include AOD as a predictor of monthly PM2.5 in a statistical prediction model, AOD provides little additional information to improve predictions of PM2.5 when included in a model that already accounts for land use, emission sources, meteorology and regional variability. These results suggest caution in using spatial variation in AOD to stand in for spatial variation in ground-level PM2.5 in epidemiological analyses and indicate that when PM2.5 monitoring is available, careful statistical modeling outperforms the use of AOD.
Resumo:
We propose a method for diagnosing confounding bias under a model which links a spatially and temporally varying exposure and health outcome. We decompose the association into orthogonal components, corresponding to distinct spatial and temporal scales of variation. If the model fully controls for confounding, the exposure effect estimates should be equal at the different temporal and spatial scales. We show that the overall exposure effect estimate is a weighted average of the scale-specific exposure effect estimates. We use this approach to estimate the association between monthly averages of fine particles (PM2.5) over the preceding 12 months and monthly mortality rates in 113 U.S. counties from 2000-2002. We decompose the association between PM2.5 and mortality into two components: 1) the association between “national trends” in PM2.5 and mortality; and 2) the association between “local trends,” defined as county-specificdeviations from national trends. This second component provides evidence as to whether counties having steeper declines in PM2.5 also have steeper declines in mortality relative to their national trends. We find that the exposure effect estimates are different at these two spatio-temporalscales, which raises concerns about confounding bias. We believe that the association between trends in PM2.5 and mortality at the national scale is more likely to be confounded than is the association between trends in PM2.5 and mortality at the local scale. If the association at the national scale is set aside, there is little evidence of an association between 12-month exposure to PM2.5 and mortality.