3 resultados para spatial and temporal patterns

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite a growing awareness that the herbaceous layer serves a special role in maintaining the structure and function of forests, this stratum remainsan underappreciated aspect of forest ecosystems. In this article I review and synthesize information concerning the herb layer’s structure,composition, and dynamics to emphasize its role as an integral component of forest ecosystems. Because species diversity is highest in the herb layeramong all forest strata, forest biodiversity is largely a function of the herb-layer community. Competitive interactions within the herb layer candetermine the initial success of plants occupying higher strata, including the regeneration of dominant overstory tree species. Furthermore, the herblayer and the overstory can become linked through parallel responses to similar environmental gradients. These relationships between strata varyboth spatially and temporally. Because the herb layer responds sensitively to disturbance across broad spatial and temporal scales, its dynamics canprovide important information regarding the site characteristics of forests, including patterns of past land-use practices. Thus, the herb layer has asignificance that belies its diminutive stature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a method for diagnosing confounding bias under a model which links a spatially and temporally varying exposure and health outcome. We decompose the association into orthogonal components, corresponding to distinct spatial and temporal scales of variation. If the model fully controls for confounding, the exposure effect estimates should be equal at the different temporal and spatial scales. We show that the overall exposure effect estimate is a weighted average of the scale-specific exposure effect estimates. We use this approach to estimate the association between monthly averages of fine particles (PM2.5) over the preceding 12 months and monthly mortality rates in 113 U.S. counties from 2000-2002. We decompose the association between PM2.5 and mortality into two components: 1) the association between “national trends” in PM2.5 and mortality; and 2) the association between “local trends,” defined as county-specificdeviations from national trends. This second component provides evidence as to whether counties having steeper declines in PM2.5 also have steeper declines in mortality relative to their national trends. We find that the exposure effect estimates are different at these two spatio-temporalscales, which raises concerns about confounding bias. We believe that the association between trends in PM2.5 and mortality at the national scale is more likely to be confounded than is the association between trends in PM2.5 and mortality at the local scale. If the association at the national scale is set aside, there is little evidence of an association between 12-month exposure to PM2.5 and mortality.