17 resultados para proportional hazards
em Collection Of Biostatistics Research Archive
Resumo:
The concordance probability is used to evaluate the discriminatory power and the predictive accuracy of nonlinear statistical models. We derive an analytic expression for the concordance probability in the Cox proportional hazards model. The proposed estimator is a function of the regression parameters and the covariate distribution only and does not use the observed event and censoring times. For this reason it is asymptotically unbiased, unlike Harrell's c-index based on informative pairs. The asymptotic distribution of the concordance probability estimate is derived using U-statistic theory and the methodology is applied to a predictive model in lung cancer.
Resumo:
Professor Sir David R. Cox (DRC) is widely acknowledged as among the most important scientists of the second half of the twentieth century. He inherited the mantle of statistical science from Pearson and Fisher, advanced their ideas, and translated statistical theory into practice so as to forever change the application of statistics in many fields, but especially biology and medicine. The logistic and proportional hazards models he substantially developed, are arguably among the most influential biostatistical methods in current practice. This paper looks forward over the period from DRC's 80th to 90th birthdays, to speculate about the future of biostatistics, drawing lessons from DRC's contributions along the way. We consider "Cox's model" of biostatistics, an approach to statistical science that: formulates scientific questions or quantities in terms of parameters gamma in probability models f(y; gamma) that represent in a parsimonious fashion, the underlying scientific mechanisms (Cox, 1997); partition the parameters gamma = theta, eta into a subset of interest theta and other "nuisance parameters" eta necessary to complete the probability distribution (Cox and Hinkley, 1974); develops methods of inference about the scientific quantities that depend as little as possible upon the nuisance parameters (Barndorff-Nielsen and Cox, 1989); and thinks critically about the appropriate conditional distribution on which to base infrences. We briefly review exciting biomedical and public health challenges that are capable of driving statistical developments in the next decade. We discuss the statistical models and model-based inferences central to the CM approach, contrasting them with computationally-intensive strategies for prediction and inference advocated by Breiman and others (e.g. Breiman, 2001) and to more traditional design-based methods of inference (Fisher, 1935). We discuss the hierarchical (multi-level) model as an example of the future challanges and opportunities for model-based inference. We then consider the role of conditional inference, a second key element of the CM. Recent examples from genetics are used to illustrate these ideas. Finally, the paper examines causal inference and statistical computing, two other topics we believe will be central to biostatistics research and practice in the coming decade. Throughout the paper, we attempt to indicate how DRC's work and the "Cox Model" have set a standard of excellence to which all can aspire in the future.
Resumo:
We propose a new method for fitting proportional hazards models with error-prone covariates. Regression coefficients are estimated by solving an estimating equation that is the average of the partial likelihood scores based on imputed true covariates. For the purpose of imputation, a linear spline model is assumed on the baseline hazard. We discuss consistency and asymptotic normality of the resulting estimators, and propose a stochastic approximation scheme to obtain the estimates. The algorithm is easy to implement, and reduces to the ordinary Cox partial likelihood approach when the measurement error has a degenerative distribution. Simulations indicate high efficiency and robustness. We consider the special case where error-prone replicates are available on the unobserved true covariates. As expected, increasing the number of replicate for the unobserved covariates increases efficiency and reduces bias. We illustrate the practical utility of the proposed method with an Eastern Cooperative Oncology Group clinical trial where a genetic marker, c-myc expression level, is subject to measurement error.
Resumo:
Use of microarray technology often leads to high-dimensional and low- sample size data settings. Over the past several years, a variety of novel approaches have been proposed for variable selection in this context. However, only a small number of these have been adapted for time-to-event data where censoring is present. Among standard variable selection methods shown both to have good predictive accuracy and to be computationally efficient is the elastic net penalization approach. In this paper, adaptation of the elastic net approach is presented for variable selection both under the Cox proportional hazards model and under an accelerated failure time (AFT) model. Assessment of the two methods is conducted through simulation studies and through analysis of microarray data obtained from a set of patients with diffuse large B-cell lymphoma where time to survival is of interest. The approaches are shown to match or exceed the predictive performance of a Cox-based and an AFT-based variable selection method. The methods are moreover shown to be much more computationally efficient than their respective Cox- and AFT- based counterparts.
Resumo:
Suppose that having established a marginal total effect of a point exposure on a time-to-event outcome, an investigator wishes to decompose this effect into its direct and indirect pathways, also know as natural direct and indirect effects, mediated by a variable known to occur after the exposure and prior to the outcome. This paper proposes a theory of estimation of natural direct and indirect effects in two important semiparametric models for a failure time outcome. The underlying survival model for the marginal total effect and thus for the direct and indirect effects, can either be a marginal structural Cox proportional hazards model, or a marginal structural additive hazards model. The proposed theory delivers new estimators for mediation analysis in each of these models, with appealing robustness properties. Specifically, in order to guarantee ignorability with respect to the exposure and mediator variables, the approach, which is multiply robust, allows the investigator to use several flexible working models to adjust for confounding by a large number of pre-exposure variables. Multiple robustness is appealing because it only requires a subset of working models to be correct for consistency; furthermore, the analyst need not know which subset of working models is in fact correct to report valid inferences. Finally, a novel semiparametric sensitivity analysis technique is developed for each of these models, to assess the impact on inference, of a violation of the assumption of ignorability of the mediator.
Resumo:
This paper introduces a novel approach to making inference about the regression parameters in the accelerated failure time (AFT) model for current status and interval censored data. The estimator is constructed by inverting a Wald type test for testing a null proportional hazards model. A numerically efficient Markov chain Monte Carlo (MCMC) based resampling method is proposed to simultaneously obtain the point estimator and a consistent estimator of its variance-covariance matrix. We illustrate our approach with interval censored data sets from two clinical studies. Extensive numerical studies are conducted to evaluate the finite sample performance of the new estimators.
Resumo:
It is well known that unrecognized heterogeneity among patients, such as is conferred by genetic subtype, can undermine the power of randomized trial, designed under the assumption of homogeneity, to detect a truly beneficial treatment. We consider the conditional power approach to allow for recovery of power under unexplained heterogeneity. While Proschan and Hunsberger (1995) confined the application of conditional power design to normally distributed observations, we consider more general and difficult settings in which the data are in the framework of continuous time and are subject to censoring. In particular, we derive a procedure appropriate for the analysis of the weighted log rank test under the assumption of a proportional hazards frailty model. The proposed method is illustrated through application to a brain tumor trial.
Resumo:
This paper proposes Poisson log-linear multilevel models to investigate population variability in sleep state transition rates. We specifically propose a Bayesian Poisson regression model that is more flexible, scalable to larger studies, and easily fit than other attempts in the literature. We further use hierarchical random effects to account for pairings of individuals and repeated measures within those individuals, as comparing diseased to non-diseased subjects while minimizing bias is of epidemiologic importance. We estimate essentially non-parametric piecewise constant hazards and smooth them, and allow for time varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming piecewise constant hazards. This relationship allows us to synthesize two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed.