1 resultado para practical applicability
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (48)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (23)
- Biodiversity Heritage Library, United States (28)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (74)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (78)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (15)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (17)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (12)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Howard @ Howard University | Howard University Research (1)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (4)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (51)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Glasgow Theses Service (1)
- Harvard University (3)
- Institute of Public Health in Ireland, Ireland (4)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Santarém (2)
- Instituto Politécnico do Porto, Portugal (19)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (38)
- National Center for Biotechnology Information - NCBI (3)
- Open University Netherlands (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (9)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (54)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (11)
- School of Medicine, Washington University, United States (5)
- Scielo Saúde Pública - SP (28)
- Universidad Autónoma de Nuevo León, Mexico (11)
- Universidad de Alicante (12)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (43)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (6)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (55)
- Université de Montréal (1)
- Université de Montréal, Canada (9)
- University of Connecticut - USA (1)
- University of Michigan (46)
- University of Queensland eSpace - Australia (33)
- University of Southampton, United Kingdom (7)
Resumo:
The last two decades have seen intense scientific and regulatory interest in the health effects of particulate matter (PM). Influential epidemiological studies that characterize chronic exposure of individuals rely on monitoring data that are sparse in space and time, so they often assign the same exposure to participants in large geographic areas and across time. We estimate monthly PM during 1988-2002 in a large spatial domain for use in studying health effects in the Nurses' Health Study. We develop a conceptually simple spatio-temporal model that uses a rich set of covariates. The model is used to estimate concentrations of PM10 for the full time period and PM2.5 for a subset of the period. For the earlier part of the period, 1988-1998, few PM2.5 monitors were operating, so we develop a simple extension to the model that represents PM2.5 conditionally on PM10 model predictions. In the epidemiological analysis, model predictions of PM10 are more strongly associated with health effects than when using simpler approaches to estimate exposure. Our modeling approach supports the application in estimating both fine-scale and large-scale spatial heterogeneity and capturing space-time interaction through the use of monthly-varying spatial surfaces. At the same time, the model is computationally feasible, implementable with standard software, and readily understandable to the scientific audience. Despite simplifying assumptions, the model has good predictive performance and uncertainty characterization.