1 resultado para polynomial identities
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (3)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Archive of European Integration (1)
- Aston University Research Archive (26)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (30)
- Boston University Digital Common (3)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (25)
- Cambridge University Engineering Department Publications Database (14)
- CentAUR: Central Archive University of Reading - UK (38)
- Central European University - Research Support Scheme (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (7)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (17)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (11)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Escola Superior de Educação de Paula Frassinetti (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (8)
- Helda - Digital Repository of University of Helsinki (9)
- Indian Institute of Science - Bangalore - Índia (32)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Leiria (1)
- Ministerio de Cultura, Spain (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (94)
- Queensland University of Technology - ePrints Archive (332)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (36)
- Repositorio Institucional UNISALLE - Colombia (1)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (3)
- Universidade Complutense de Madrid (6)
- Universidade de Lisboa - Repositório Aberto (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (5)
- University of Queensland eSpace - Australia (24)
- University of Southampton, United Kingdom (5)
- University of Washington (2)
- WestminsterResearch - UK (7)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
A method is given for proving efficiency of NPMLE directly linked to empirical process theory. The conditions in general are appropriate consistency of the NPMLE, differentiability of the model, differentiability of the parameter of interest, local convexity of the parameter space, and a Donsker class condition for the class of efficient influence functions obtained by varying the parameters. For the case that the model is linear in the parameter and the parameter space is convex, as with most nonparametric missing data models, we show that the method leads to an identity for the NPMLE which almost says that the NPMLE is efficient and provides us straightforwardly with a consistency and efficiency proof. This identify is extended to an almost linear class of models which contain biased sampling models. To illustrate, the method is applied to the univariate censoring model, random truncation models, interval censoring case I model, the class of parametric models and to a class of semiparametric models.