1 resultado para pin-on-disc wear test
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (30)
- Biblioteca de Teses e Dissertações da USP (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (58)
- CentAUR: Central Archive University of Reading - UK (26)
- Central European University - Research Support Scheme (7)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (34)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (11)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (117)
- Institutional Repository of Leibniz University Hannover (2)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (4)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (1)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (68)
- Queensland University of Technology - ePrints Archive (88)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (143)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- School of Medicine, Washington University, United States (8)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (20)
- Universidade Complutense de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (10)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universidade Metodista de São Paulo (4)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (6)
- Université de Montréal (2)
- Université de Montréal, Canada (8)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (7)
- University of Queensland eSpace - Australia (7)
- WestminsterResearch - UK (1)
Resumo:
Among the many applications of microarray technology, one of the most popular is the identification of genes that are differentially expressed in two conditions. A common statistical approach is to quantify the interest of each gene with a p-value, adjust these p-values for multiple comparisons, chose an appropriate cut-off, and create a list of candidate genes. This approach has been criticized for ignoring biological knowledge regarding how genes work together. Recently a series of methods, that do incorporate biological knowledge, have been proposed. However, many of these methods seem overly complicated. Furthermore, the most popular method, Gene Set Enrichment Analysis (GSEA), is based on a statistical test known for its lack of sensitivity. In this paper we compare the performance of a simple alternative to GSEA.We find that this simple solution clearly outperforms GSEA.We demonstrate this with eight different microarray datasets.