6 resultados para performance studies
em Collection Of Biostatistics Research Archive
Resumo:
Goal: The Halex is an indicator of health status that combines self-rated health and activity limitations, which has been used by NCHS to predict future years of healthy life. The scores for each health state were developed based on strong assumptions, notably that a person in excellent health with ADL disabilities is as healthy as a person in poor health with no disabilities. Our goal was to examine the performance of the Halex as a longitudinal measure of health for older adults, and to improve the scoring if necessary. Methods: We used data from the Cardiovascular Health Study (CHS) to compare the relationship of baseline health to health 2 years later. Subject ages ranged from 65 to 103 (mean age 75). A total of 40,827 transitions were available for analysis. We examined whether Halex scores at time 0 were related monotonically to scores two years later, and iterated the original scores to improve the fit over time. Findings: The original Halex scores were not consistent over time. Persons in excellent health with ADL limitations were much healthier 2 years later than people in poor health with no limitations, even though they had been assumed to have identical health. People with ADL limitations had higher scores than predicted. The assumptions made in creating the Halex were not upheld in the data. Conclusions: The new iterated scores are specific to older adults, are appropriate for longitudinal data, and are relatively assumption-free. We recommend the use of these new scores for longitudinal studies of older adults that use the Halex health states.
Resumo:
The aim of many genetic studies is to locate the genomic regions (called quantitative trait loci, QTLs) that contribute to variation in a quantitative trait (such as body weight). Confidence intervals for the locations of QTLs are particularly important for the design of further experiments to identify the gene or genes responsible for the effect. Likelihood support intervals are the most widely used method to obtain confidence intervals for QTL location, but the non-parametric bootstrap has also been recommended. Through extensive computer simulation, we show that bootstrap confidence intervals are poorly behaved and so should not be used in this context. The profile likelihood (or LOD curve) for QTL location has a tendency to peak at genetic markers, and so the distribution of the maximum likelihood estimate (MLE) of QTL location has the unusual feature of point masses at genetic markers; this contributes to the poor behavior of the bootstrap. Likelihood support intervals and approximate Bayes credible intervals, on the other hand, are shown to behave appropriately.
Resumo:
When different markers are responsive to different aspects of a disease, combination of multiple markers could provide a better screening test for early detection. It is also resonable to assume that the risk of disease changes smoothly as the biomarker values change and the change in risk is monotone with respect to each biomarker. In this paper, we propose a boundary constrained tensor-product B-spline method to estimate the risk of disease by maximizing a penalized likelihood. To choose the optimal amount of smoothing, two scores are proposed which are extensions of the GCV score (O'Sullivan et al. (1986)) and the GACV score (Ziang and Wahba (1996)) to incorporate linear constraints. Simulation studies are carried out to investigate the performance of the proposed estimator and the selection scores. In addidtion, sensitivities and specificities based ona pproximate leave-one-out estimates are proposed to generate more realisitc ROC curves. Data from a pancreatic cancer study is used for illustration.
Resumo:
A marker that is strongly associated with outcome (or disease) is often assumed to be effective for classifying individuals according to their current or future outcome. However, for this to be true, the associated odds ratio must be of a magnitude rarely seen in epidemiological studies. An illustration of the relationship between odds ratios and receiver operating characteristic (ROC) curves shows, for example, that a marker with an odds ratio as high as 3 is in fact a very poor classification tool. If a marker identifies 10 percent of controls as positive (false positives) and has an odds ratio of 3, then it will only correctly identify 25 percent of cases as positive (true positives). Moreover, the authors illustrate that a single measure of association such as an odds ratio does not meaningfully describe a marker’s ability to classify subjects. Appropriate statistical methods for assessing and reporting the classification power of a marker are described. The serious pitfalls of using more traditional methods based on parameters in logistic regression models are illustrated.
Resumo:
Use of microarray technology often leads to high-dimensional and low- sample size data settings. Over the past several years, a variety of novel approaches have been proposed for variable selection in this context. However, only a small number of these have been adapted for time-to-event data where censoring is present. Among standard variable selection methods shown both to have good predictive accuracy and to be computationally efficient is the elastic net penalization approach. In this paper, adaptation of the elastic net approach is presented for variable selection both under the Cox proportional hazards model and under an accelerated failure time (AFT) model. Assessment of the two methods is conducted through simulation studies and through analysis of microarray data obtained from a set of patients with diffuse large B-cell lymphoma where time to survival is of interest. The approaches are shown to match or exceed the predictive performance of a Cox-based and an AFT-based variable selection method. The methods are moreover shown to be much more computationally efficient than their respective Cox- and AFT- based counterparts.
Resumo:
In this paper, we consider estimation of the causal effect of a treatment on an outcome from observational data collected in two phases. In the first phase, a simple random sample of individuals are drawn from a population. On these individuals, information is obtained on treatment, outcome, and a few low-dimensional confounders. These individuals are then stratified according to these factors. In the second phase, a random sub-sample of individuals are drawn from each stratum, with known, stratum-specific selection probabilities. On these individuals, a rich set of confounding factors are collected. In this setting, we introduce four estimators: (1) simple inverse weighted, (2) locally efficient, (3) doubly robust and (4)enriched inverse weighted. We evaluate the finite-sample performance of these estimators in a simulation study. We also use our methodology to estimate the causal effect of trauma care on in-hospital mortality using data from the National Study of Cost and Outcomes of Trauma.