1 resultado para output pricing
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (19)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- AMS Campus - Alm@DL - Università di Bologna (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Archive of European Integration (89)
- Aston University Research Archive (50)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (16)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (56)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (97)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (21)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (64)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (6)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (36)
- Harvard University (3)
- Institute of Public Health in Ireland, Ireland (9)
- Instituto Politécnico do Porto, Portugal (10)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (4)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (12)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (44)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (29)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (9)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (15)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (28)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (25)
- Université de Montréal, Canada (31)
- University of Connecticut - USA (17)
- University of Michigan (62)
- University of Queensland eSpace - Australia (49)
- University of Southampton, United Kingdom (7)
- University of Washington (2)
Resumo:
Markov chain Monte Carlo is a method of producing a correlated sample in order to estimate features of a complicated target distribution via simple ergodic averages. A fundamental question in MCMC applications is when should the sampling stop? That is, when are the ergodic averages good estimates of the desired quantities? We consider a method that stops the MCMC sampling the first time the width of a confidence interval based on the ergodic averages is less than a user-specified value. Hence calculating Monte Carlo standard errors is a critical step in assessing the output of the simulation. In particular, we consider the regenerative simulation and batch means methods of estimating the variance of the asymptotic normal distribution. We describe sufficient conditions for the strong consistency and asymptotic normality of both methods and investigate their finite sample properties in a variety of examples.