1 resultado para nature and classification of trusts
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (3)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (13)
- Aston University Research Archive (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (56)
- Biodiversity Heritage Library, United States (53)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (48)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (30)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (15)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (14)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Digital Archives@Colby (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (4)
- DigitalCommons@The Texas Medical Center (5)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (8)
- Duke University (1)
- Ecology and Society (1)
- eScholarship Repository - University of California (1)
- Glasgow Theses Service (1)
- Harvard University (2)
- Institute of Public Health in Ireland, Ireland (3)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (2)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Memorial University Research Repository (2)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (37)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (7)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (23)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- Scielo Saúde Pública - SP (30)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (3)
- Universidade do Minho (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (37)
- Université de Montréal (1)
- Université de Montréal, Canada (4)
- University of Michigan (344)
- University of Queensland eSpace - Australia (70)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
High-throughput gene expression technologies such as microarrays have been utilized in a variety of scientific applications. Most of the work has been on assessing univariate associations between gene expression with clinical outcome (variable selection) or on developing classification procedures with gene expression data (supervised learning). We consider a hybrid variable selection/classification approach that is based on linear combinations of the gene expression profiles that maximize an accuracy measure summarized using the receiver operating characteristic curve. Under a specific probability model, this leads to consideration of linear discriminant functions. We incorporate an automated variable selection approach using LASSO. An equivalence between LASSO estimation with support vector machines allows for model fitting using standard software. We apply the proposed method to simulated data as well as data from a recently published prostate cancer study.