2 resultados para multi scale modeling
em Collection Of Biostatistics Research Archive
Resumo:
The last two decades have seen intense scientific and regulatory interest in the health effects of particulate matter (PM). Influential epidemiological studies that characterize chronic exposure of individuals rely on monitoring data that are sparse in space and time, so they often assign the same exposure to participants in large geographic areas and across time. We estimate monthly PM during 1988-2002 in a large spatial domain for use in studying health effects in the Nurses' Health Study. We develop a conceptually simple spatio-temporal model that uses a rich set of covariates. The model is used to estimate concentrations of PM10 for the full time period and PM2.5 for a subset of the period. For the earlier part of the period, 1988-1998, few PM2.5 monitors were operating, so we develop a simple extension to the model that represents PM2.5 conditionally on PM10 model predictions. In the epidemiological analysis, model predictions of PM10 are more strongly associated with health effects than when using simpler approaches to estimate exposure. Our modeling approach supports the application in estimating both fine-scale and large-scale spatial heterogeneity and capturing space-time interaction through the use of monthly-varying spatial surfaces. At the same time, the model is computationally feasible, implementable with standard software, and readily understandable to the scientific audience. Despite simplifying assumptions, the model has good predictive performance and uncertainty characterization.
Resumo:
This paper proposes Poisson log-linear multilevel models to investigate population variability in sleep state transition rates. We specifically propose a Bayesian Poisson regression model that is more flexible, scalable to larger studies, and easily fit than other attempts in the literature. We further use hierarchical random effects to account for pairings of individuals and repeated measures within those individuals, as comparing diseased to non-diseased subjects while minimizing bias is of epidemiologic importance. We estimate essentially non-parametric piecewise constant hazards and smooth them, and allow for time varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming piecewise constant hazards. This relationship allows us to synthesize two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed.