6 resultados para models, genetic
em Collection Of Biostatistics Research Archive
Resumo:
An important aspect of the QTL mapping problem is the treatment of missing genotype data. If complete genotype data were available, QTL mapping would reduce to the problem of model selection in linear regression. However, in the consideration of loci in the intervals between the available genetic markers, genotype data is inherently missing. Even at the typed genetic markers, genotype data is seldom complete, as a result of failures in the genotyping assays or for the sake of economy (for example, in the case of selective genotyping, where only individuals with extreme phenotypes are genotyped). We discuss the use of algorithms developed for hidden Markov models (HMMs) to deal with the missing genotype data problem.
Resumo:
Marginal generalized linear models can be used for clustered and longitudinal data by fitting a model as if the data were independent and using an empirical estimator of parameter standard errors. We extend this approach to data where the number of observations correlated with a given one grows with sample size and show that parameter estimates are consistent and asymptotically Normal with a slower convergence rate than for independent data, and that an information sandwich variance estimator is consistent. We present two problems that motivated this work, the modelling of patterns of HIV genetic variation and the behavior of clustered data estimators when clusters are large.
Resumo:
Investigators interested in whether a disease aggregates in families often collect case-control family data, which consist of disease status and covariate information for families selected via case or control probands. Here, we focus on the use of case-control family data to investigate the relative contributions to the disease of additive genetic effects (A), shared family environment (C), and unique environment (E). To this end, we describe a ACE model for binary family data and then introduce an approach to fitting the model to case-control family data. The structural equation model, which has been described previously, combines a general-family extension of the classic ACE twin model with a (possibly covariate-specific) liability-threshold model for binary outcomes. Our likelihood-based approach to fitting involves conditioning on the proband’s disease status, as well as setting prevalence equal to a pre-specified value that can be estimated from the data themselves if necessary. Simulation experiments suggest that our approach to fitting yields approximately unbiased estimates of the A, C, and E variance components, provided that certain commonly-made assumptions hold. These assumptions include: the usual assumptions for the classic ACE and liability-threshold models; assumptions about shared family environment for relative pairs; and assumptions about the case-control family sampling, including single ascertainment. When our approach is used to fit the ACE model to Austrian case-control family data on depression, the resulting estimate of heritability is very similar to those from previous analyses of twin data.