1 resultado para largest finite-time Lyapunov exponent
em Collection Of Biostatistics Research Archive
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Aston University Research Archive (10)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (290)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CentAUR: Central Archive University of Reading - UK (24)
- Cochin University of Science & Technology (CUSAT), India (10)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (36)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (5)
- Digital Commons @ Center for the Blue Economy - Middlebury Institute of International Studies at Monterey (1)
- Digital Commons at Florida International University (11)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (4)
- DRUM (Digital Repository at the University of Maryland) (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (4)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- National Center for Biotechnology Information - NCBI (4)
- Publishing Network for Geoscientific & Environmental Data (7)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (12)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (103)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- Scielo Saúde Pública - SP (6)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (33)
- Universidade Complutense de Madrid (11)
- Universidade do Minho (4)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (8)
- Université de Montréal, Canada (9)
- University of Connecticut - USA (2)
- University of Queensland eSpace - Australia (224)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
This paper introduces a novel approach to making inference about the regression parameters in the accelerated failure time (AFT) model for current status and interval censored data. The estimator is constructed by inverting a Wald type test for testing a null proportional hazards model. A numerically efficient Markov chain Monte Carlo (MCMC) based resampling method is proposed to simultaneously obtain the point estimator and a consistent estimator of its variance-covariance matrix. We illustrate our approach with interval censored data sets from two clinical studies. Extensive numerical studies are conducted to evaluate the finite sample performance of the new estimators.