13 resultados para division of responsibilities
em Collection Of Biostatistics Research Archive
Resumo:
In natural history studies of chronic disease, it is of interest to understand the evolution of key variables that measure aspects of disease progression. This is particularly true for immunological variables in persons infected with the Human Immunodeficiency Virus (HIV). The natural timescale for such studies is time since infection. However, most data available for analysis arise from prevalent cohorts, where the date of infection is unknown for most or all individuals. As a result, standard curve fitting algorithms are not immediately applicable. Here we propose two methods to circumvent this difficulty. The first uses repeated measurement data to provide information not only on the level of the variable of interest, but also on its rate of change, while the second uses an estimate of the expected time since infection. Both methods are based on the principal curves algorithm of Hastie and Stuetzle, and are applied to data from a prevalent cohort of HIV-infected homosexual men, giving estimates of the average pattern of CD4+ lymphocyte decline. These methods are applicable to natural history studies using data from prevalent cohorts where the time of disease origin is uncertain, provided certain ancillary information is available from external sources.
Resumo:
Common goals in epidemiologic studies of infectious diseases include identification of the infectious agent, description of the modes of transmission and characterization of factors that influence the probability of transmission from infected to uninfected individuals. In the case of AIDS, the agent has been identified as the Human Immunodeficiency Virus (HIV), and transmission is known to occur through a variety of contact mechanisms including unprotected sexual intercourse, transfusion of infected blood products and sharing of needles in intravenous drug use. Relatively little is known about the probability of IV transmission associated with the various modes of contact, or the role that other cofactors play in promoting or suppressing transmission. Here, transmission probability refers to the probability that the virus is transmitted to a susceptible individual following exposure consisting of a series of potentially infectious contacts. The infectivity of HIV for a given route of transmission is defined to be the per contact probability of infection. Knowledge of infectivity and its relationship to other factors is important in understanding the dynamics of the AIDS epidemic and in suggesting appropriate measures to control its spread. The primary source of empirical data about infectivity comes from sexual partners of infected individuals. Partner studies consist of a series of such partnerships, usually heterosexual and monogamous, each composed of an initially infected "index case" and a partner who may or may not be infected by the time of data collection. However, because the infection times of both partners may be unknown and the history of contacts uncertain, any quantitative characterization of infectivity is extremely difficult. Thus, most statistical analyses of partner study data involve the simplifying assumption that infectivity is a constant common to all partnerships. The major objectives of this work are to describe and discuss the design and analysis of partner studies, providing a general statistical framework for investigations of infectivity and risk factors for HIV transmission. The development is largely based on three papers: Jewell and Shiboski (1990), Kim and Lagakos (1990), and Shiboski and Jewell (1992).
Resumo:
In Malani and Neilsen (1992) we have proposed alternative estimates of survival function (for time to disease) using a simple marker that describes time to some intermediate stage in a disease process. In this paper we derive the asymptotic variance of one such proposed estimator using two different methods and compare terms of order 1/n when there is no censoring. In the absence of censoring the asymptotic variance obtained using the Greenwood type approach converges to exact variance up to terms involving 1/n. But the asymptotic variance obtained using the theory of the counting process and results from Voelkel and Crowley (1984) on semi-Markov processes has a different term of order 1/n. It is not clear to us at this point why the variance formulae using the latter approach give different results.
Resumo:
We investigate the interplay of smoothness and monotonicity assumptions when estimating a density from a sample of observations. The nonparametric maximum likelihood estimator of a decreasing density on the positive half line attains a rate of convergence at a fixed point if the density has a negative derivative. The same rate is obtained by a kernel estimator, but the limit distributions are different. If the density is both differentiable and known to be monotone, then a third estimator is obtained by isotonization of a kernel estimator. We show that this again attains the rate of convergence and compare the limit distributors of the three types of estimators. It is shown that both isotonization and smoothing lead to a more concentrated limit distribution and we study the dependence on the proportionality constant in the bandwidth. We also show that isotonization does not change the limit behavior of a kernel estimator with a larger bandwidth, in the case that the density is known to have more than one derivative.
Resumo:
Much controversy exists over whether the course of schizophrenia, as defined by the lengths of repeated community tenures, is progressively ameliorating or deteriorating. This article employs a new statistical method proposed by Wang and Chen (2000) to analyze the Denmark registry data in Eaton, et al (1992). The new statistical method correctly handles the bias caused by induced informative censoring, which is an interaction of the heterogeneity of schizophrenia patients and long-term follow-up. The analysis shows a progressive deterioration pattern in terms of community tenures for the full registry cohort, rather than a progressive amelioration pattern as reported for a selected sub-cohort in Eaton, et al (1992). When adjusted for the long-term chronicity of calendar time, no significant progressive pattern was found for the full cohort.
Resumo:
Estimation of the number of mixture components (k) is an unsolved problem. Available methods for estimation of k include bootstrapping the likelihood ratio test statistics and optimizing a variety of validity functionals such as AIC, BIC/MDL, and ICOMP. We investigate the minimization of distance between fitted mixture model and the true density as a method for estimating k. The distances considered are Kullback-Leibler (KL) and “L sub 2”. We estimate these distances using cross validation. A reliable estimate of k is obtained by voting of B estimates of k corresponding to B cross validation estimates of distance. This estimation methods with KL distance is very similar to Monte Carlo cross validated likelihood methods discussed by Smyth (2000). With focus on univariate normal mixtures, we present simulation studies that compare the cross validated distance method with AIC, BIC/MDL, and ICOMP. We also apply the cross validation estimate of distance approach along with AIC, BIC/MDL and ICOMP approach, to data from an osteoporosis drug trial in order to find groups that differentially respond to treatment.
Resumo:
Backcalculation is the primary method used to reconstruct past human immunodeficiency virus (HIV) infection rates, to estimate current prevalence of HIV infection, and to project future incidence of acquired immunodeficiency syndrome (AIDS). The method is very sensitive to uncertainty about the incubation period. We estimate incubation distributions from three sets of cohort data and find that the estimates for the cohorts are substantially different. Backcalculations employing the different estimates produce equally good fits to reported AIDS counts but quite different estimates of cumulative infections. These results suggest that the incubation distribution is likely to differ for different populations and that the differences are large enough to have a big impact on the resulting estimates of HIV infection rates. This seriously limits the usefulness of backcalculation for populations (such as intravenous drug users, heterosexuals, and women) that lack precise information on incubation times.
Resumo:
In estimation of a survival function, current status data arises when the only information available on individuals is their survival status at a single monitoring time. Here we briefly review extensions of this form of data structure in two directions: (i) doubly censored current status data, where there is incomplete information on the origin of the failure time random variable, and (ii) current status information on more complicated stochastic processes. Simple examples of these data forms are presented for motivation.
Resumo:
We consider nonparametric missing data models for which the censoring mechanism satisfies coarsening at random and which allow complete observations on the variable X of interest. W show that beyond some empirical process conditions the only essential condition for efficiency of an NPMLE of the distribution of X is that the regions associated with incomplete observations on X contain enough complete observations. This is heuristically explained by describing the EM-algorithm. We provide identifiably of the self-consistency equation and efficiency of the NPMLE in order to make this statement rigorous. The usual kind of differentiability conditions in the proof are avoided by using an identity which holds for the NPMLE of linear parameters in convex models. We provide a bivariate censoring application in which the condition and hence the NPMLE fails, but where other estimators, not based on the NPMLE principle, are highly inefficient. It is shown how to slightly reduce the data so that the conditions hold for the reduced data. The conditions are verified for the univariate censoring, double censored, and Ibragimov-Has'minski models.
Resumo:
We analyze three sets of doubly-censored cohort data on incubation times, estimating incubation distributions using semi-parametric methods and assessing the comparability of the estimates. Weibull models appear to be inappropriate for at least one of the cohorts, and the estimates for the different cohorts are substantially different. We use these estimates as inputs for backcalculation, using a nonparametric method based on maximum penalized likelihood. The different incubations all produce fits to the reported AIDS counts that are as good as the fit from a nonstationary incubation distribution that models treatment effects, but the estimated infection curves are very different. We also develop a method for estimating nonstationarity as part of the backcalculation procedure and find that such estimates also depend very heavily on the assumed incubation distribution. We conclude that incubation distributions are so uncertain that meaningful error bounds are difficult to place on backcalculated estimates and that backcalculation may be too unreliable to be used without being supplemented by other sources of information in HIV prevalence and incidence.
Resumo:
Comments about the current place for the discipline of Biostatistics within Public Health (1993).
Resumo:
This paper discusses estimation of the tumor incidence rate, the death rate given tumor is present and the death rate given tumor is absent using a discrete multistage model. The model was originally proposed by Dewanji and Kalbfleisch (1986) and the maximum likelihood estimate of the tumor incidence rate was obtained using EM algorithm. In this paper, we use a reparametrization to simplify the estimation procedure. The resulting estimates are not always the same as the maximum likelihood estimates but are asymptotically equivalent. In addition, an explicit expression for asymptotic variance and bias of the proposed estimators is also derived. These results can be used to compare efficiency of different sacrifice schemes in carcinogenicity experiments.
Resumo:
A method is given for proving efficiency of NPMLE directly linked to empirical process theory. The conditions in general are appropriate consistency of the NPMLE, differentiability of the model, differentiability of the parameter of interest, local convexity of the parameter space, and a Donsker class condition for the class of efficient influence functions obtained by varying the parameters. For the case that the model is linear in the parameter and the parameter space is convex, as with most nonparametric missing data models, we show that the method leads to an identity for the NPMLE which almost says that the NPMLE is efficient and provides us straightforwardly with a consistency and efficiency proof. This identify is extended to an almost linear class of models which contain biased sampling models. To illustrate, the method is applied to the univariate censoring model, random truncation models, interval censoring case I model, the class of parametric models and to a class of semiparametric models.