3 resultados para decomposition rank
em Collection Of Biostatistics Research Archive
Resumo:
Power calculations in a small sample comparative study, with a continuous outcome measure, are typically undertaken using the asymptotic distribution of the test statistic. When the sample size is small, this asymptotic result can be a poor approximation. An alternative approach, using a rank based test statistic, is an exact power calculation. When the number of groups is greater than two, the number of calculations required to perform an exact power calculation is prohibitive. To reduce the computational burden, a Monte Carlo resampling procedure is used to approximate the exact power function of a k-sample rank test statistic under the family of Lehmann alternative hypotheses. The motivating example for this approach is the design of animal studies, where the number of animals per group is typically small.
Resumo:
In environmental epidemiology, exposure X and health outcome Y vary in space and time. We present a method to diagnose the possible influence of unmeasured confounders U on the estimated effect of X on Y and to propose several approaches to robust estimation. The idea is to use space and time as proxy measures for the unmeasured factors U. We start with the time series case where X and Y are continuous variables at equally-spaced times and assume a linear model. We define matching estimator b(u)s that correspond to pairs of observations with specific lag u. Controlling for a smooth function of time, St, using a kernel estimator is roughly equivalent to estimating the association with a linear combination of the b(u)s with weights that involve two components: the assumptions about the smoothness of St and the normalized variogram of the X process. When an unmeasured confounder U exists, but the model otherwise correctly controls for measured confounders, the excess variation in b(u)s is evidence of confounding by U. We use the plot of b(u)s versus lag u, lagged-estimator-plot (LEP), to diagnose the influence of U on the effect of X on Y. We use appropriate linear combination of b(u)s or extrapolate to b(0) to obtain novel estimators that are more robust to the influence of smooth U. The methods are extended to time series log-linear models and to spatial analyses. The LEP plot gives us a direct view of the magnitude of the estimators for each lag u and provides evidence when models did not adequately describe the data.