1 resultado para dS vacua in string theory
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (18)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (14)
- Aston University Research Archive (19)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (21)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (27)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (35)
- Brock University, Canada (12)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (59)
- Cochin University of Science & Technology (CUSAT), India (23)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (53)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (11)
- Dalarna University College Electronic Archive (9)
- Department of Computer Science E-Repository - King's College London, Strand, London (12)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (5)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (108)
- Duke University (2)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Glasgow Theses Service (1)
- Harvard University (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Politécnico do Porto, Portugal (8)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (17)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (177)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (10)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (9)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (36)
- Universidad Politécnica de Madrid (7)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (12)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (8)
- Université de Lausanne, Switzerland (28)
- Université de Montréal, Canada (33)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (19)
- University of Queensland eSpace - Australia (23)
- University of Washington (5)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed models and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated margional residual vector by the Cholesky decomposition of the inverse of the estimated margional variance matrix. The resulting "rotated" residuals are used to construct an empirical cumulative distribution function and pointwise standard errors. The theoretical framework, including conditions and asymptotic properties, involves technical details that are motivated by Lange and Ryan (1989), Pierce (1982), and Randles (1982). Our method appears to work well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series). Our methods can produce satisfactory results even for models that do not satisfy all of the technical conditions stated in our theory.