2 resultados para copy and paste
em Collection Of Biostatistics Research Archive
Resumo:
Amplifications and deletions of chromosomal DNA, as well as copy-neutral loss of heterozygosity have been associated with diseases processes. High-throughput single nucleotide polymorphism (SNP) arrays are useful for making genome-wide estimates of copy number and genotype calls. Because neighboring SNPs in high throughput SNP arrays are likely to have dependent copy number and genotype due to the underlying haplotype structure and linkage disequilibrium, hidden Markov models (HMM) may be useful for improving genotype calls and copy number estimates that do not incorporate information from nearby SNPs. We improve previous approaches that utilize a HMM framework for inference in high throughput SNP arrays by integrating copy number, genotype calls, and the corresponding confidence scores when available. Using simulated data, we demonstrate how confidence scores control smoothing in a probabilistic framework. Software for fitting HMMs to SNP array data is available in the R package ICE.
Resumo:
Genotyping platforms such as Affymetrix can be used to assess genotype-phenotype as well as copy number-phenotype associations at millions of markers. While genotyping algorithms are largely concordant when assessed on HapMap samples, tools to assess copy number changes are more variable and often discordant. One explanation for the discordance is that copy number estimates are susceptible to systematic differences between groups of samples that were processed at different times or by different labs. Analysis algorithms that do not adjust for batch effects are prone to spurious measures of association. The R package crlmm implements a multilevel model that adjusts for batch effects and provides allele-specific estimates of copy number. This paper illustrates a workflow for the estimation of allele-specific copy number, develops markerand study-level summaries of batch effects, and demonstrates how the marker-level estimates can be integrated with complimentary Bioconductor software for inferring regions of copy number gain or loss. All analyses are performed in the statistical environment R. A compendium for reproducing the analysis is available from the author’s website (http://www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html).