4 resultados para context space theory

em Collection Of Biostatistics Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild (1999) under two-phase sampling designs. We show that the maximum likelihood estimators for both the parametric and nonparametric parts of the model are asymptotically normal and efficient. The efficient influence function for the parametric part aggress with the more general information bound calculations of Robins, Hsieh, and Newey (1995). By verifying the conditions of Murphy and Van der Vaart (2000) for a least favorable parametric submodel, we provide asymptotic justification for statistical inference based on profile likelihood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whilst estimation of the marginal (total) causal effect of a point exposure on an outcome is arguably the most common objective of experimental and observational studies in the health and social sciences, in recent years, investigators have also become increasingly interested in mediation analysis. Specifically, upon establishing a non-null total effect of the exposure, investigators routinely wish to make inferences about the direct (indirect) pathway of the effect of the exposure not through (through) a mediator variable that occurs subsequently to the exposure and prior to the outcome. Although powerful semiparametric methodologies have been developed to analyze observational studies, that produce double robust and highly efficient estimates of the marginal total causal effect, similar methods for mediation analysis are currently lacking. Thus, this paper develops a general semiparametric framework for obtaining inferences about so-called marginal natural direct and indirect causal effects, while appropriately accounting for a large number of pre-exposure confounding factors for the exposure and the mediator variables. Our analytic framework is particularly appealing, because it gives new insights on issues of efficiency and robustness in the context of mediation analysis. In particular, we propose new multiply robust locally efficient estimators of the marginal natural indirect and direct causal effects, and develop a novel double robust sensitivity analysis framework for the assumption of ignorability of the mediator variable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last two decades have seen intense scientific and regulatory interest in the health effects of particulate matter (PM). Influential epidemiological studies that characterize chronic exposure of individuals rely on monitoring data that are sparse in space and time, so they often assign the same exposure to participants in large geographic areas and across time. We estimate monthly PM during 1988-2002 in a large spatial domain for use in studying health effects in the Nurses' Health Study. We develop a conceptually simple spatio-temporal model that uses a rich set of covariates. The model is used to estimate concentrations of PM10 for the full time period and PM2.5 for a subset of the period. For the earlier part of the period, 1988-1998, few PM2.5 monitors were operating, so we develop a simple extension to the model that represents PM2.5 conditionally on PM10 model predictions. In the epidemiological analysis, model predictions of PM10 are more strongly associated with health effects than when using simpler approaches to estimate exposure. Our modeling approach supports the application in estimating both fine-scale and large-scale spatial heterogeneity and capturing space-time interaction through the use of monthly-varying spatial surfaces. At the same time, the model is computationally feasible, implementable with standard software, and readily understandable to the scientific audience. Despite simplifying assumptions, the model has good predictive performance and uncertainty characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High density oligonucleotide expression arrays are a widely used tool for the measurement of gene expression on a large scale. Affymetrix GeneChip arrays appear to dominate this market. These arrays use short oligonucleotides to probe for genes in an RNA sample. Due to optical noise, non-specific hybridization, probe-specific effects, and measurement error, ad-hoc measures of expression, that summarize probe intensities, can lead to imprecise and inaccurate results. Various researchers have demonstrated that expression measures based on simple statistical models can provide great improvements over the ad-hoc procedure offered by Affymetrix. Recently, physical models based on molecular hybridization theory, have been proposed as useful tools for prediction of, for example, non-specific hybridization. These physical models show great potential in terms of improving existing expression measures. In this paper we demonstrate that the system producing the measured intensities is too complex to be fully described with these relatively simple physical models and we propose empirically motivated stochastic models that compliment the above mentioned molecular hybridization theory to provide a comprehensive description of the data. We discuss how the proposed model can be used to obtain improved measures of expression useful for the data analysts.