1 resultado para conceptual data modelling
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (6)
- Abertay Research Collections - Abertay University’s repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (25)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (41)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (181)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (14)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (28)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (10)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (5)
- Digital Commons at Florida International University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (33)
- Glasgow Theses Service (1)
- Instituto Politécnico do Porto, Portugal (13)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Memorial University Research Repository (1)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (70)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (6)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (12)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (28)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (25)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (15)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (15)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (51)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (15)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (22)
- Université de Lausanne, Switzerland (73)
- Université de Montréal, Canada (7)
- University of Michigan (1)
- University of Queensland eSpace - Australia (56)
- University of Southampton, United Kingdom (2)
Resumo:
We present a state-of-the-art application of smoothing for dependent bivariate binomial spatial data to Loa loa prevalence mapping in West Africa. This application is special because it starts with the non-spatial calibration of survey instruments, continues with the spatial model building and assessment and ends with robust, tested software that will be used by the field scientists of the World Health Organization for online prevalence map updating. From a statistical perspective several important methodological issues were addressed: (a) building spatial models that are complex enough to capture the structure of the data but remain computationally usable; (b)reducing the computational burden in the handling of very large covariate data sets; (c) devising methods for comparing spatial prediction methods for a given exceedance policy threshold.