1 resultado para commitment, activity physical, sport, cystic fibrosis, career, trajectory, disease
em Collection Of Biostatistics Research Archive
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (26)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (31)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (4)
- Bioline International (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (124)
- Brock University, Canada (10)
- CaltechTHESIS (2)
- CentAUR: Central Archive University of Reading - UK (9)
- Coffee Science - Universidade Federal de Lavras (7)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (9)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Dalarna University College Electronic Archive (2)
- Digital Commons at Florida International University (15)
- DigitalCommons@The Texas Medical Center (12)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Hospitais da Universidade de Coimbra (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Nacional de Saúde de Portugal (2)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (8)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- National Center for Biotechnology Information - NCBI (41)
- QSpace: Queen's University - Canada (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (16)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositorio Académico de la Universidad Nacional de Costa Rica (2)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (18)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (42)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (33)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (19)
- Universidad Politécnica de Madrid (16)
- Universidade de Lisboa - Repositório Aberto (9)
- Universidade de Madeira (1)
- Universidade do Minho (4)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (2)
- Université de Lausanne, Switzerland (71)
- Université de Montréal (2)
- Université de Montréal, Canada (26)
- University of Canberra Research Repository - Australia (3)
- University of Michigan (2)
- University of Queensland eSpace - Australia (205)
- University of Washington (1)
Resumo:
The Receiver Operating Characteristic (ROC) curve is a prominent tool for characterizing the accuracy of continuous diagnostic test. To account for factors that might invluence the test accuracy, various ROC regression methods have been proposed. However, as in any regression analysis, when the assumed models do not fit the data well, these methods may render invalid and misleading results. To date practical model checking techniques suitable for validating existing ROC regression models are not yet available. In this paper, we develop cumulative residual based procedures to graphically and numerically assess the goodness-of-fit for some commonly used ROC regression models, and show how specific components of these models can be examined within this framework. We derive asymptotic null distributions for the residual process and discuss resampling procedures to approximate these distributions in practice. We illustrate our methods with a dataset from the Cystic Fibrosis registry.