1 resultado para candidate genes
em Collection Of Biostatistics Research Archive
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (17)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (9)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (9)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (71)
- Boston University Digital Common (4)
- Brock University, Canada (4)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (27)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (10)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (37)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (31)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Helda - Digital Repository of University of Helsinki (87)
- Indian Institute of Science - Bangalore - Índia (58)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Nacional de Saúde de Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (27)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (38)
- Queensland University of Technology - ePrints Archive (263)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (4)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (74)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (4)
- Université de Montréal (2)
- Université de Montréal, Canada (23)
- Université Laval Mémoires et thèses électroniques (3)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (26)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Among the many applications of microarray technology, one of the most popular is the identification of genes that are differentially expressed in two conditions. A common statistical approach is to quantify the interest of each gene with a p-value, adjust these p-values for multiple comparisons, chose an appropriate cut-off, and create a list of candidate genes. This approach has been criticized for ignoring biological knowledge regarding how genes work together. Recently a series of methods, that do incorporate biological knowledge, have been proposed. However, many of these methods seem overly complicated. Furthermore, the most popular method, Gene Set Enrichment Analysis (GSEA), is based on a statistical test known for its lack of sensitivity. In this paper we compare the performance of a simple alternative to GSEA.We find that this simple solution clearly outperforms GSEA.We demonstrate this with eight different microarray datasets.