2 resultados para bioequivalence
em Collection Of Biostatistics Research Archive
Resumo:
Bioequivalence trials are abbreviated clinical trials whereby a generic drug or new formulation is evaluated to determine if it is "equivalent" to a corresponding previously approved brand-name drug or formulation. In this manuscript, we survey the process of testing bioequivalence and advocate the likelihood paradigm for representing the resulting data as evidence. We emphasize the unique conflicts between hypothesis testing and confidence intervals in this area - which we believe are indicative of the existence of the systemic defects in the frequentist approach - that the likelihood paradigm avoids. We suggest the direct use of profile likelihoods for evaluating bioequivalence and examine the main properties of profile likelihoods and estimated likelihoods under simulation. This simulation study shows that profile likelihoods are a reasonable alternative to the (unknown) true likelihood for a range of parameters commensurate with bioequivalence research. Our study also shows that the standard methods in the current practice of bioequivalence trials offers only weak evidence from the evidential point of view.
Resumo:
Equivalence testing is growing in use in scientific research outside of its traditional role in the drug approval process. Largely due to its ease of use and recommendation from the United States Food and Drug Administration guidance, the most common statistical method for testing (bio)equivalence is the two one-sided tests procedure (TOST). Like classical point-null hypothesis testing, TOST is subject to multiplicity concerns as more comparisons are made. In this manuscript, a condition that bounds the family-wise error rate (FWER) using TOST is given. This condition then leads to a simple solution for controlling the FWER. Specifically, we demonstrate that if all pairwise comparisons of k independent groups are being evaluated for equivalence, then simply scaling the nominal Type I error rate down by (k - 1) is sufficient to maintain the family-wise error rate at the desired value or less. The resulting rule is much less conservative than the equally simple Bonferroni correction. An example of equivalence testing in a non drug-development setting is given.