1 resultado para asymptotic suboptimality
em Collection Of Biostatistics Research Archive
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Abertay Research Collections - Abertay University’s repository (2)
- Aberystwyth University Repository - Reino Unido (5)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Aquatic Commons (24)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (14)
- Aston University Research Archive (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (54)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Boston University Digital Common (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (15)
- CaltechTHESIS (34)
- Cambridge University Engineering Department Publications Database (48)
- CentAUR: Central Archive University of Reading - UK (86)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (62)
- Cochin University of Science & Technology (CUSAT), India (10)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (9)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (223)
- Institutional Repository of Leibniz University Hannover (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (100)
- Queensland University of Technology - ePrints Archive (93)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (21)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (13)
- Universidade Complutense de Madrid (3)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Montréal, Canada (48)
- University of Michigan (2)
- University of Queensland eSpace - Australia (2)
- University of Southampton, United Kingdom (10)
- University of Washington (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In Malani and Neilsen (1992) we have proposed alternative estimates of survival function (for time to disease) using a simple marker that describes time to some intermediate stage in a disease process. In this paper we derive the asymptotic variance of one such proposed estimator using two different methods and compare terms of order 1/n when there is no censoring. In the absence of censoring the asymptotic variance obtained using the Greenwood type approach converges to exact variance up to terms involving 1/n. But the asymptotic variance obtained using the theory of the counting process and results from Voelkel and Crowley (1984) on semi-Markov processes has a different term of order 1/n. It is not clear to us at this point why the variance formulae using the latter approach give different results.