15 resultados para air pollution index

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NMMAPS data package contains daily mortality, air pollution, and weather data originally assembled as part of the National Morbidity,Mortality, and Air Pollution Study (NMMAPS). The data have recently been updated and are available for 108 United States cities for the years 1987--2000. The package provides tools for building versions of the full database in a structured and reproducible manner. These database derivatives may be more suitable for particular analyses. We describe how to use the package to implement a multi-city time series analysis of mortality and PM(10). In addition we demonstrate how to reproduce recent findings based on the NMMAPS data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While many time-series studies of ozone and daily mortality identified positive associations,others yielded null or inconclusive results. We performed a meta-analysis of 144 effect estimates from 39 time-series studies, and estimated pooled effects by lags, age groups,cause-specific mortality, and concentration metrics. We compared results to estimates from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS), a time-series study of 95 large U.S. cities from 1987 to 2000. Both meta-analysis and NMMAPS results provided strong evidence of a short-term association between ozone and mortality, with larger effects for cardiovascular and respiratory mortality, the elderly, and current day ozone exposure as compared to other single day lags. In both analyses, results were not sensitive to adjustment for particulate matter and model specifications. In the meta-analysis we found that a 10 ppb increase in daily ozone is associated with a 0.83 (95% confidence interval: 0.53, 1.12%) increase in total mortality, whereas the corresponding NMMAPS estimate is 0.25%(0.12, 0.39%). Meta-analysis results were consistently larger than those from NMMAPS,indicating publication bias. Additional publication bias is evident regarding the choice of lags in time-series studies, and the larger heterogeneity in posterior city-specific estimates in the meta-analysis, as compared with NMAMPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous time series studies have provided strong evidence of an association between increased levels of ambient air pollution and increased levels of hospital admissions, typically at 0, 1, or 2 days after an air pollution episode. An important research aim is to extend existing statistical models so that a more detailed understanding of the time course of hospitalization after exposure to air pollution can be obtained. Information about this time course, combined with prior knowledge about biological mechanisms, could provide the basis for hypotheses concerning the mechanism by which air pollution causes disease. Previous studies have identified two important methodological questions: (1) How can we estimate the shape of the distributed lag between increased air pollution exposure and increased mortality or morbidity? and (2) How should we estimate the cumulative population health risk from short-term exposure to air pollution? Distributed lag models are appropriate tools for estimating air pollution health effects that may be spread over several days. However, estimation for distributed lag models in air pollution and health applications is hampered by the substantial noise in the data and the inherently weak signal that is the target of investigation. We introduce an hierarchical Bayesian distributed lag model that incorporates prior information about the time course of pollution effects and combines information across multiple locations. The model has a connection to penalized spline smoothing using a special type of penalty matrix. We apply the model to estimating the distributed lag between exposure to particulate matter air pollution and hospitalization for cardiovascular and respiratory disease using data from a large United States air pollution and hospitalization database of Medicare enrollees in 94 counties covering the years 1999-2002.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series models relating short-term changes in air pollution levels to daily mortality counts typically assume that the effects of air pollution on the log relative rate of mortality do not vary with time. However, these short-term effects might plausibly vary by season. Changes in the sources of air pollution and meteorology can result in changes in characteristics of the air pollution mixture across seasons. The authors develop Bayesian semi-parametric hierarchical models for estimating time-varying effects of pollution on mortality in multi-site time series studies. The methods are applied to the updated National Morbidity and Mortality Air Pollution Study database for the period 1987--2000, which includes data for 100 U.S. cities. At the national level, a 10 micro-gram/m3 increase in PM(10) at lag 1 is associated with a 0.15 (95% posterior interval: -0.08, 0.39),0.14 (-0.14, 0.42), 0.36 (0.11, 0.61), and 0.14 (-0.06, 0.34) percent increase in mortality for winter, spring, summer, and fall, respectively. An analysis by geographical regions finds a strong seasonal pattern in the northeast (with a peak in summer) and little seasonal variation in the southern regions of the country. These results provide useful information for understanding particle toxicity and guiding future analyses of particle constituent data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prospective cohort studies have provided evidence on longer-term mortality risks of fine particulate matter (PM2.5), but due to their complexity and costs, only a few have been conducted. By linking monitoring data to the U.S. Medicare system by county of residence, we developed a retrospective cohort study, the Medicare Air Pollution Cohort Study (MCAPS), comprising over 20 million enrollees in the 250 largest counties during 2000-2002. We estimated log-linear regression models having as outcome the age-specific mortality rate for each county and as the main predictor, the average level for the study period 2000. Area-level covariates were used to adjust for socio-economic status and smoking. We reported results under several degrees of adjustment for spatial confounding and with stratification into by eastern, central and western counties. We estimated that a 10 µg/m3 increase in PM25 is associated with a 7.6% increase in mortality (95% CI: 4.4 to 10.8%). We found a stronger association in the eastern counties than nationally, with no evidence of an association in western counties. When adjusted for spatial confounding, the estimated log-relative risks drop by 50%. We demonstrated the feasibility of using Medicare data to establish cohorts for follow-up for effects of air pollution. Particulate matter (PM) air pollution is a global public health problem (1). In developing countries, levels of airborne particles still reach concentrations at which serious health consequences are well-documented; in developed countries, recent epidemiologic evidence shows continued adverse effects, even though particle levels have declined in the last two decades (2-6). Increased mortality associated with higher levels of PM air pollution has been of particular concern, giving an imperative for stronger protective regulations (7). Evidence on PM and health comes from studies of acute and chronic adverse effects (6). The London Fog of 1952 provides dramatic evidence of the unacceptable short-term risk of extremely high levels of PM air pollution (8-10); multi-site time-series studies of daily mortality show that far lower levels of particles are still associated with short-term risk (5)(11-13). Cohort studies provide complementary evidence on the longer-term risks of PM air pollution, indicating the extent to which exposure reduces life expectancy. The design of these studies involves follow-up of cohorts for mortality over periods of years to decades and an assessment of mortality risk in association with estimated long-term exposure to air pollution (2-4;14-17). Because of the complexity and costs of such studies, only a small number have been conducted. The most rigorously executed, including the Harvard Six Cities Study and the American Cancer Society’s (ACS) Cancer Prevention Study II, have provided generally consistent evidence for an association of long- term exposure to particulate matter air pollution with increased all-cause and cardio-respiratory mortality (2,4,14,15). Results from these studies have been used in risk assessments conducted for setting the U.S. National Ambient Air Quality Standard (NAAQS) for PM and for estimating the global burden of disease attributable to air pollution (18,19). Additional prospective cohort studies are necessary, however, to confirm associations between long-term exposure to PM and mortality, to broaden the populations studied, and to refine estimates by regions across which particle composition varies. Toward this end, we have used data from the U.S. Medicare system, which covers nearly all persons 65 years of age and older in the United States. We linked Medicare mortality data to (particulate matter less than 2.5 µm in aerodynamic diameter) air pollution monitoring data to create a new retrospective cohort study, the Medicare Air Pollution Cohort Study (MCAPS), consisting of 20 million persons from 250 counties and representing about 50% of the US population of elderly living in urban settings. In this paper, we report on the relationship between longer-term exposure to PM2.5 and mortality risk over the period 2000 to 2002 in the MCAPS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasingly, regression models are used when residuals are spatially correlated. Prominent examples include studies in environmental epidemiology to understand the chronic health effects of pollutants. I consider the effects of residual spatial structure on the bias and precision of regression coefficients, developing a simple framework in which to understand the key issues and derive informative analytic results. When the spatial residual is induced by an unmeasured confounder, regression models with spatial random effects and closely-related models such as kriging and penalized splines are biased, even when the residual variance components are known. Analytic and simulation results show how the bias depends on the spatial scales of the covariate and the residual; bias is reduced only when there is variation in the covariate at a scale smaller than the scale of the unmeasured confounding. I also discuss how the scales of the residual and the covariate affect efficiency and uncertainty estimation when the residuals can be considered independent of the covariate. In an application on the association between black carbon particulate matter air pollution and birth weight, controlling for large-scale spatial variation appears to reduce bias from unmeasured confounders, while increasing uncertainty in the estimated pollution effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-site time series studies of air pollution and mortality and morbidity have figured prominently in the literature as comprehensive approaches for estimating acute effects of air pollution on health. Hierarchical models are generally used to combine site-specific information and estimate pooled air pollution effects taking into account both within-site statistical uncertainty, and across-site heterogeneity. Within a site, characteristics of time series data of air pollution and health (small pollution effects, missing data, highly correlated predictors, non linear confounding etc.) make modelling all sources of uncertainty challenging. One potential consequence is underestimation of the statistical variance of the site-specific effects to be combined. In this paper we investigate the impact of variance underestimation on the pooled relative rate estimate. We focus on two-stage normal-normal hierarchical models and on under- estimation of the statistical variance at the first stage. By mathematical considerations and simulation studies, we found that variance underestimation does not affect the pooled estimate substantially. However, some sensitivity of the pooled estimate to variance underestimation is observed when the number of sites is small and underestimation is severe. These simulation results are applicable to any two-stage normal-normal hierarchical model for combining information of site-specific results, and they can be easily extended to more general hierarchical formulations. We also examined the impact of variance underestimation on the national average relative rate estimate from the National Morbidity Mortality Air Pollution Study and we found that variance underestimation as much as 40% has little effect on the national average.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to make scientific findings reproducible is increasingly important in areas where substantive results are the product of complex statistical computations. Reproducibility can allow others to verify the published findings and conduct alternate analyses of the same data. A question that arises naturally is how can one conduct and distribute reproducible research? This question is relevant from the point of view of both the authors who want to make their research reproducible and readers who want to reproduce relevant findings reported in the scientific literature. We present a framework in which reproducible research can be conducted and distributed via cached computations and describe specific tools for both authors and readers. As a prototype implementation we introduce three software packages written in the R language. The cacheSweave and stashR packages together provide tools for caching computational results in a key-value style database which can be published to a public repository for readers to download. The SRPM package provides tools for generating and interacting with "shared reproducibility packages" (SRPs) which can facilitate the distribution of the data and code. As a case study we demonstrate the use of the toolkit on a national study of air pollution exposure and mortality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Visualization and exploratory analysis is an important part of any data analysis and is made more challenging when the data are voluminous and high-dimensional. One such example is environmental monitoring data, which are often collected over time and at multiple locations, resulting in a geographically indexed multivariate time series. Financial data, although not necessarily containing a geographic component, present another source of high-volume multivariate time series data. We present the mvtsplot function which provides a method for visualizing multivariate time series data. We outline the basic design concepts and provide some examples of its usage by applying it to a database of ambient air pollution measurements in the United States and to a hypothetical portfolio of stocks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we develop Bayesian hierarchical distributed lag models for estimating associations between daily variations in summer ozone levels and daily variations in cardiovascular and respiratory (CVDRESP) mortality counts for 19 U.S. large cities included in the National Morbidity Mortality Air Pollution Study (NMMAPS) for the period 1987 - 1994. At the first stage, we define a semi-parametric distributed lag Poisson regression model to estimate city-specific relative rates of CVDRESP associated with short-term exposure to summer ozone. At the second stage, we specify a class of distributions for the true city-specific relative rates to estimate an overall effect by taking into account the variability within and across cities. We perform the calculations with respect to several random effects distributions (normal, t-student, and mixture of normal), thus relaxing the common assumption of a two-stage normal-normal hierarchical model. We assess the sensitivity of the results to: 1) lag structure for ozone exposure; 2) degree of adjustment for long-term trends; 3) inclusion of other pollutants in the model;4) heat waves; 5) random effects distributions; and 6) prior hyperparameters. On average across cities, we found that a 10ppb increase in summer ozone level for every day in the previous week is associated with 1.25 percent increase in CVDRESP mortality (95% posterior regions: 0.47, 2.03). The relative rate estimates are also positive and statistically significant at lags 0, 1, and 2. We found that associations between summer ozone and CVDRESP mortality are sensitive to the confounding adjustment for PM_10, but are robust to: 1) the adjustment for long-term trends, other gaseous pollutants (NO_2, SO_2, and CO); 2) the distributional assumptions at the second stage of the hierarchical model; and 3) the prior distributions on all unknown parameters. Bayesian hierarchical distributed lag models and their application to the NMMAPS data allow us estimation of an acute health effect associated with exposure to ambient air pollution in the last few days on average across several locations. The application of these methods and the systematic assessment of the sensitivity of findings to model assumptions provide important epidemiological evidence for future air quality regulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantifying the health effects associated with simultaneous exposure to many air pollutants is now a research priority of the US EPA. Bayesian hierarchical models (BHM) have been extensively used in multisite time series studies of air pollution and health to estimate health effects of a single pollutant adjusted for potential confounding of other pollutants and other time-varying factors. However, when the scientific goal is to estimate the impacts of many pollutants jointly, a straightforward application of BHM is challenged by the need to specify a random-effect distribution on a high-dimensional vector of nuisance parameters, which often do not have an easy interpretation. In this paper we introduce a new BHM formulation, which we call "reduced BHM", aimed at analyzing clustered data sets in the presence of a large number of random effects that are not of primary scientific interest. At the first stage of the reduced BHM, we calculate the integrated likelihood of the parameter of interest (e.g. excess number of deaths attributed to simultaneous exposure to high levels of many pollutants). At the second stage, we specify a flexible random-effect distribution directly on the parameter of interest. The reduced BHM overcomes many of the challenges in the specification and implementation of full BHM in the context of a large number of nuisance parameters. In simulation studies we show that the reduced BHM performs comparably to the full BHM in many scenarios, and even performs better in some cases. Methods are applied to estimate location-specific and overall relative risks of cardiovascular hospital admissions associated with simultaneous exposure to elevated levels of particulate matter and ozone in 51 US counties during the period 1999-2005.