1 resultado para Worth
em Collection Of Biostatistics Research Archive
Filtro por publicador
- Aberdeen University (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Adam Mickiewicz University Repository (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (20)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (18)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (9)
- Aston University Research Archive (5)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Câmara dos Deputados (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de la Universidad Católica Argentina (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (26)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Boston University Digital Common (4)
- Brock University, Canada (10)
- Bucknell University Digital Commons - Pensilvania - USA (9)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (27)
- CentAUR: Central Archive University of Reading - UK (37)
- Center for Jewish History Digital Collections (1)
- Central European University - Research Support Scheme (2)
- Chapman University Digital Commons - CA - USA (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (11)
- Cochin University of Science & Technology (CUSAT), India (11)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (8)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (5)
- Digital Repository at Iowa State University (1)
- DigitalCommons@University of Nebraska - Lincoln (6)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (11)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (25)
- Indian Institute of Science - Bangalore - Índia (14)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (8)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Ministerio de Cultura, Spain (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (45)
- Queensland University of Technology - ePrints Archive (159)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (26)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (85)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (18)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (19)
- Universidade Federal do Rio Grande do Norte (UFRN) (27)
- Universitat de Girona, Spain (9)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (23)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (39)
- University of Queensland eSpace - Australia (8)
- University of Southampton, United Kingdom (2)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a decade’s worth of statistical methodology development. The recently developed RNA sequencing (RNA-seq) technology has generated much excitement in part due to claims of reduced variability in comparison to microarrays. However, we show RNA-seq data demonstrates unwanted and obscuring variability similar to what was first observed in microarrays. In particular, we find GC-content has a strong sample specific effect on gene expression measurements that, if left uncorrected, leads to false positives in downstream results. We also report on commonly observed data distortions that demonstrate the need for data normalization. Here we describe statistical methodology that improves precision by 42% without loss of accuracy. Our resulting conditional quantile normalization (CQN) algorithm combines robust generalized regression to remove systematic bias introduced by deterministic features such as GC-content, and quantile normalization to correct for global distortions.