4 resultados para Using Lean tools
em Collection Of Biostatistics Research Archive
Resumo:
We propose a novel class of models for functional data exhibiting skewness or other shape characteristics that vary with spatial or temporal location. We use copulas so that the marginal distributions and the dependence structure can be modeled independently. Dependence is modeled with a Gaussian or t-copula, so that there is an underlying latent Gaussian process. We model the marginal distributions using the skew t family. The mean, variance, and shape parameters are modeled nonparametrically as functions of location. A computationally tractable inferential framework for estimating heterogeneous asymmetric or heavy-tailed marginal distributions is introduced. This framework provides a new set of tools for increasingly complex data collected in medical and public health studies. Our methods were motivated by and are illustrated with a state-of-the-art study of neuronal tracts in multiple sclerosis patients and healthy controls. Using the tools we have developed, we were able to find those locations along the tract most affected by the disease. However, our methods are general and highly relevant to many functional data sets. In addition to the application to one-dimensional tract profiles illustrated here, higher-dimensional extensions of the methodology could have direct applications to other biological data including functional and structural MRI.
Resumo:
The ability to make scientific findings reproducible is increasingly important in areas where substantive results are the product of complex statistical computations. Reproducibility can allow others to verify the published findings and conduct alternate analyses of the same data. A question that arises naturally is how can one conduct and distribute reproducible research? This question is relevant from the point of view of both the authors who want to make their research reproducible and readers who want to reproduce relevant findings reported in the scientific literature. We present a framework in which reproducible research can be conducted and distributed via cached computations and describe specific tools for both authors and readers. As a prototype implementation we introduce three software packages written in the R language. The cacheSweave and stashR packages together provide tools for caching computational results in a key-value style database which can be published to a public repository for readers to download. The SRPM package provides tools for generating and interacting with "shared reproducibility packages" (SRPs) which can facilitate the distribution of the data and code. As a case study we demonstrate the use of the toolkit on a national study of air pollution exposure and mortality.
Resumo:
Genotyping platforms such as Affymetrix can be used to assess genotype-phenotype as well as copy number-phenotype associations at millions of markers. While genotyping algorithms are largely concordant when assessed on HapMap samples, tools to assess copy number changes are more variable and often discordant. One explanation for the discordance is that copy number estimates are susceptible to systematic differences between groups of samples that were processed at different times or by different labs. Analysis algorithms that do not adjust for batch effects are prone to spurious measures of association. The R package crlmm implements a multilevel model that adjusts for batch effects and provides allele-specific estimates of copy number. This paper illustrates a workflow for the estimation of allele-specific copy number, develops markerand study-level summaries of batch effects, and demonstrates how the marker-level estimates can be integrated with complimentary Bioconductor software for inferring regions of copy number gain or loss. All analyses are performed in the statistical environment R. A compendium for reproducing the analysis is available from the author’s website (http://www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html).
Resumo:
The stashR package (a Set of Tools for Administering SHared Repositories) for R implements a simple key-value style database where character string keys are associated with data values. The key-value databases can be either stored locally on the user's computer or accessed remotely via the Internet. Methods specific to the stashR package allow users to share data repositories or access previously created remote data repositories. In particular, methods are available for the S4 classes localDB and remoteDB to insert, retrieve, or delete data from the database as well as to synchronize local copies of the data to the remote version of the database. Users efficiently access information from a remote database by retrieving only the data files indexed by user-specified keys and caching this data in a local copy of the remote database. The local and remote counterparts of the stashR package offer the potential to enhance reproducible research by allowing users of Sweave to cache their R computations for a research paper in a localDB database. This database can then be stored on the Internet as a remoteDB database. When readers of the research paper wish to reproduce the computations involved in creating a specific figure or calculating a specific numeric value, they can access the remoteDB database and obtain the R objects involved in the computation.